Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediates catalysts and

Indian Petrochemical Corporation Ltd. (IPCL) is a government owned corporation with the remit to expand the petrochemical and plastics production of India. It has a naphtha based ethylene cracker at Vadodara (132,000 t/y), and large gas based complexes at Nagothane near Mumbai (Bombay 400,000 t/y) and Dahej near Bharuch in Gujarat (300,000 t/y). The company produces polymers, fibre intermediates, catalysts and absorbents. [Pg.20]

The two most general features of a reaction are the apparent kinetic orders with respect to the participants (reactants, products, intermediates, catalysts, and silent partners) and the ranks of the intermediates and products. Reaction orders may vary with conversion, so accurate values are not sought. Ranks, established by Delplots, provide an indication of the sequence in which the respective species are formed, and are useful primarily in the study of reactions with many participants and about whose networks little is known to start with. [Pg.191]

Beside this, the succinic acid (SA) and adipic acid (ADA) is an analogue diacid compound similar to MA. Due to low solubility, the SA and ADA alone is unable to produce any sort of oscillations and pattern formation in BZ reaction condition. A possibility for oscillation and pattern formation can be created if SA and ADA will combine with another organic substrate of known property. Thus, dual-substrate mode of BZ reaction has been adopted for present investigation. Also, the SA and ADA are important chemical components of various biochemical studies. Due to its crystalline property and constmctive crystallizing habits, the crystallization phenomena might be expected in the domain of intermediates, catalysts, and some stable products of BZ reaction at widened time intervals. [Pg.50]

The general relations (3.1), (3.2), and (3.3) arc conditions that must be observed if the terms reactant, product, stoichiometry, intermediate, catalyst, and independent mechanistic step are to be used consistehtly. The examples show that they have been implicitly observed in many instances, but it is important that they be taken into... [Pg.263]

C, b.p. 81"C. Manufactured by the reduction of benzene with hydrogen in the presence of a nickel catalyst and recovered from natural gase.s. It is inflammable. Used as an intermediate in the preparation of nylon [6] and [66] via caprolactam and as a solvent for oils, fats and waxes, and also as a paint remover. For stereochemistry of cyclohexane see conformation. U.S. production 1980 1 megatonne. [Pg.122]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

As a class of compounds, nitriles have broad commercial utility that includes their use as solvents, feedstocks, pharmaceuticals, catalysts, and pesticides. The versatile reactivity of organonitnles arises both from the reactivity of the C=N bond, and from the abiHty of the cyano substituent to activate adjacent bonds, especially C—H bonds. Nitriles can be used to prepare amines, amides, amidines, carboxyHc acids and esters, aldehydes, ketones, large-ring cycHc ketones, imines, heterocycles, orthoesters, and other compounds. Some of the more common transformations involve hydrolysis or alcoholysis to produce amides, acids and esters, and hydrogenation to produce amines, which are intermediates for the production of polyurethanes and polyamides. An extensive review on hydrogenation of nitriles has been recendy pubHshed (10). [Pg.217]

The base-catalyzed reaction of acetaldehyde with excess formaldehyde [50-00-0] is the commercial route to pentaerythritol [115-77-5]. The aldol condensation of three moles of formaldehyde with one mole of acetaldehyde is foUowed by a crossed Cannizzaro reaction between pentaerythrose, the intermediate product, and formaldehyde to give pentaerythritol (57). The process proceeds to completion without isolation of the intermediate. Pentaerythrose [3818-32-4] has also been made by condensing acetaldehyde and formaldehyde at 45°C using magnesium oxide as a catalyst (58). The vapor-phase reaction of acetaldehyde and formaldehyde at 475°C over a catalyst composed of lanthanum oxide on siHca gel gives acrolein [107-02-8] (59). [Pg.50]

Chemical Manufacturing. Chemical manufacturing accounts for over 50% of all U.S. caustic soda demand. It is used primarily for pH control, neutralization, off-gas scmbbing, and as a catalyst. About 50% of the total demand in this category, or approximately 25% of overall U.S. consumption, is used in the manufacture of organic intermediates, polymers, and end products. The majority of caustic soda required here is for the production of propylene oxide, polycarbonate resin, epoxies, synthetic fibers, and surface-active agents (6). [Pg.518]

Two-step approaches based on cocatalysts or alternate catalysts and one-step approaches which circumvent the formation of the biscarbamate intermediates have also been reported (76—81). [Pg.454]

Peroxyoxalate. The chemical activation of a fluorescer by the reactions of hydrogen peroxide, a catalyst, and an oxalate ester has been the object of several mechanism studies. It was first proposed in 1967 that peroxyoxalate (26) was converted to dioxetanedione (27), a highly unstable intermediate which served as the chemical activator of the fluorescer (fir) (6,9). [Pg.266]

Sulfosahcyhc acid is prepared by heating 10 parts of sahcyhc acid with 50 parts of concentrated sulfuric acid, by chlorosulfonation of sahcyhc acid and subsequent hydrolysis of the acid chloride, or by sulfonation with hquid sulfur trioxide in tetrachloroethylene. It is used as an intermediate in the production of dyestuffs, grease additives, catalysts, and surfactants. It is also useful as a colorimetric reagent for ferric iron and as a reagent for albumin. Table 9 shows the physical properties of sahcyhc acid derivatives. [Pg.290]

Synthesis of P-Methylheptenone from Petrochemical Sources. p-MethyUieptenone (1) is an important intermediate in the total synthesis of terpenes. Continuous hydrochlorination of isoprene [78-79-5] produces prenyl chloride [505-60-6] which then reacts with acetone with a quaternary ammonium catalyst and sodium hydroxide to give P-methyUieptenone (6-methyIhept-5-en-2-one [110-93-0]) (eq. 1) (16—19). [Pg.410]

More conveniently, compound (13) was directly condensed with barbituric acid (14) in acetic acid (28) or in the presence of an acid catalyst in an organic solvent (29). The same a2o dye intermediate (13) and alloxantin give riboflavin in the presence of palladium on charcoal in alcohoHc hydrochloric acid under nitrogen. This reaction may involve the reduction of the a2o group to the (9-phenylenediamine by the alloxantin, which is dehydrogenated to alloxan (see Urea) (30). [Pg.76]

The cubic 2inc blende form of boron nitride is usually prepared from the hexagonal or rhombohedral form at high (4—6 GPa (40—60 kbar)) pressures and temperatures (1400—1700°C). The reaction is accelerated by lithium or alkaline-earth nitrides or amides, which are the best catalysts, and form intermediate Hquid compounds with BN, which are molten under synthesis conditions (11,16). Many other substances can aid the transformation. At higher pressures (6—13 GPa) the cubic or wurt2itic forms are obtained without catalysts (17). [Pg.220]

The intermediate HCIO2 is rapidly oxidized to chloric acid. Some chlorine dioxide may also be formed. Kinetic studies have shown that decomposition to O2 and chloric acid increase with concentration, temperature (88), and exposure to light (89—92), and are pH dependent (93). Decomposition to O2 is also accelerated by catalysts, and decomposition to chlorate is favored by the presence of other electrolytes, eg, sodium chloride (94—96). [Pg.467]

The heavy metals, copper, chromium, mercury, nickel, and 2inc, which are used as catalysts and complexing agents for the synthesis of dyes and dye intermediates, are considered priority poUutants (313). [Pg.386]

The sampling system consists of a condensate trap, flow-control system, and sample tank (Fig. 25-38). The analytical system consists of two major subsystems an oxidation system for the recovery and conditioning of the condensate-trap contents and an NMO analyzer. The NMO analyzer is a gas chromatograph with backflush capabihty for NMO analysis and is equipped with an oxidation catalyst, a reduction catalyst, and an FID. The system for the recovery and conditioning of the organics captured in the condensate trap consists of a heat source, an oxidation catalyst, a nondispersive infrared (NDIR) analyzer, and an intermediate collec tion vessel. [Pg.2204]

One variation in polyester intermediates that has roused some interest are those prepared by a ring-opening polymerisation of e-caprolactone and methyl-e-caprolactones with titanium catalysts and diol and triol initiators Figure 27.6). [Pg.792]

Over the years many blends of polyurethanes with other polymers have been prepared. One recent example is the blending of polyurethane intermediates with methyl methacrylate monomer and some unsaturated polyester resin. With a suitable balance of catalysts and initiators, addition and rearrangement reactions occur simultaneously but independently to give interpenetrating polymer networks. The use of the acrylic monomer lowers cost and viscosity whilst blends with 20% (MMA + polyester) have a superior impact strength. [Pg.808]

A catalyst is defined as a substance that influences the rate or the direction of a chemical reaction without being consumed. Homogeneous catalytic processes are where the catalyst is dissolved in a liquid reaction medium. The varieties of chemical species that may act as homogeneous catalysts include anions, cations, neutral species, enzymes, and association complexes. In acid-base catalysis, one step in the reaction mechanism consists of a proton transfer between the catalyst and the substrate. The protonated reactant species or intermediate further reacts with either another species in the solution or by a decomposition process. Table 1-1 shows typical reactions of an acid-base catalysis. An example of an acid-base catalysis in solution is hydrolysis of esters by acids. [Pg.26]

Chemicals include all raw materials, intermediate, product, and by-product chemicals, as well as any other chemicals used in the process (for example, catalysts). [Pg.64]

In a special circumstance the rate equation for parallel reactions may be misleading.If two parallel reactions are catalyzed by a common catalyst, and if a significant fraction of the catalyst is tied up in the form of intermediates, then the two reactions are not independent, and the rate equation will not give the transition state composition. King has analyzed this case in terms of enzyme-catalyzed reactions. [Pg.219]

Many aryhydrazones provide two or more isomers when subjected to the conditions of the Fischer indole cyclization. The product ratio and the direction of indolization can also be affected by different reaction conditions (i.e. catalysts and solvents), which is attributed, at least in part, to the relative stabilities of the two possible tautomeric ene-hydrazine intermediates. Generally, strongly acidic conditions favor formation of the least substituted ene-hydrazine, while cyclization carried out in weak acids favors the most substituted ene-hydrazine. Eaton s acid (10% P2O5 in MeSOsH) has been demonstrated to be an effective catalyst for the preparation of 3-unsubstituted indoles from methyl ketones under strongly acidic conditions. Many comprehensive reviews on this topic have appeared. ... [Pg.119]

There are very few homolytic reactions on triazolopyridines. A suggestion that the ring opening reactions of compound 1 involved free radical intermediates is not substantiated (98T9785). The involvement of radical intermediates in additions to ylides is discussed in Section IV.I. The reaction of radicals with compound 5 and its 1-substituted derivatives gives 4-substituted compounds such as 234 (96ZOK1085). A more detailed study of the reaction of the 1-methyl and 1-phenyl derivatives with r-butanol and ammonium persulfate produced 4-methyl substitution with a silver nitrate catalyst, and the side chain alcohol 235 without the catalyst (96ZOK1412). [Pg.42]

A model for the intermediate consisting of substrates 36 and 8a coordinated to catalyst 37a was proposed as shown in Scheme 6.30 [74]. In the model 39 the two triflate ligands are dissociated from copper. The ligands are arranged around copper as a trigonal bipyramid and it should be noted that in this model the oxygen atom of the vinyl ether 8a also coordinates to the metal center. However, another tetrahedral intermediate consisting of only the catalyst and the nitrone could also account for the absolute selectivity of the reaction. [Pg.233]


See other pages where Intermediates catalysts and is mentioned: [Pg.134]    [Pg.134]    [Pg.23]    [Pg.75]    [Pg.283]    [Pg.475]    [Pg.156]    [Pg.244]    [Pg.514]    [Pg.501]    [Pg.10]    [Pg.296]    [Pg.59]    [Pg.73]    [Pg.424]    [Pg.21]    [Pg.416]    [Pg.2092]    [Pg.248]    [Pg.349]    [Pg.131]    [Pg.200]    [Pg.71]    [Pg.227]    [Pg.242]   
See also in sourсe #XX -- [ Pg.42 ]

See also in sourсe #XX -- [ Pg.42 ]

See also in sourсe #XX -- [ Pg.42 ]

See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Intermediate catalyst

© 2024 chempedia.info