Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene, alkylation with

The most widely used process for the production of phenol is the cumene process developed and Hcensed in the United States by AHiedSignal (formerly AHied Chemical Corp.). Benzene is alkylated with propylene to produce cumene (isopropylbenzene), which is oxidized by air over a catalyst to produce cumene hydroperoxide (CHP). With acid catalysis, CHP undergoes controUed decomposition to produce phenol and acetone a-methylstyrene and acetophenone are the by-products (12) (see Cumene Phenol). Other commercial processes for making phenol include the Raschig process, using chlorobenzene as the starting material, and the toluene process, via a benzoic acid intermediate. In the United States, 35-40% of the phenol produced is used for phenoHc resins. [Pg.292]

Benzene is alkylated with propylene to yield cumene (qv). Cumene is catalytically oxidized in the presence of air to cumene hydroperoxide, which is decomposed into phenol and acetone (qv). Phenol is used to manufacture caprolactam (nylon) and phenoHc resins such as bisphenol A. Approximately 22% of benzene produced in 1988 was used to manufacture cumene. [Pg.49]

A water-soluble phosphine derivative of diazepam allows for more convenient parenteral tranquilizer therapy and avoids some complications due to blood pressure lowering caused by the propylene glycol medium otherwise required for administration. Fosazepam (82) is prepared from benzodiazepine by sodium hydride-mediated alkylation with chioromethyldimethyl phosphine... [Pg.195]

The main process for producing cumene is a synthetic route where benzene is alkylated with propylene to isopropylbenzene. [Pg.269]

Isopropylbenzene (A) is alkylated with propylene (P) using HF catalyst. The mono (B), di (C), tri (D) and tetra (E) derivatives are formed. Relative specific rates are given by Rodiguin Rodiguina (Consecutive Chemical Reactions, 1964) for the case of a large excess of propylene which makes the reactions pseudo first order. The relative specific rates used here are kx = 1.0, k2 = 0.5, k3 = 0.3 and k4 0.2. The system of linear differential... [Pg.96]

At a later stage alkylation with propylene to form l-isopropyl-2,4-trimethylbenzene is an important reaction to produce a bulky molecule. [Pg.286]

Although the preceding discussion of the sulfuric and hydrofluoric acid processes has been confined to butene alkylation, isobutane has also been alkylated commercially with other olefins. Ethylene, propylene, pentenes, and dimers of butenes have been used for this purpose. It is also possible to use these olefins for the alkylation of isopentane. Such an operation, however, has not achieved commercial acceptance because it produces an inferior alkylate with a high catalyst consumption, and because isopentane is a satisfactory aviation gasoline component in its own right. [Pg.107]

The main products formed by the catalytic alkylation of isobutane with ethylene (HC1—AICI3, 25-35°C) are 2,3-dimethylbutane and 2-methylpentane with smaller amounts of ethane and trimethylpentanes.13 Alkylation of isobutane with propylene (HC1—AICI3, — 30°C) yields 2,3- and 2,4-dimethylpentane as the main products and propane and trimethylpentanes as byproducts.14 This is in sharp contrast with product distributions of thermal alkylation that gives mainly 2,2-dimethylbutane (alkylation with ethylene)15 and 2,2-dimethylpentane (alkylation with propylene).16... [Pg.216]

Cycloalkanes possessing a tertiary carbon atom may be alkylated under conditions similar to those applied for the alkylation of isoalkanes. Methylcyclopentane and methylcyclohexane were studied most.5 Methylcyclopentane reacts with propylene and isobutylene in the presence of HF (23-25°C), and methylcyclohexane can also be reacted with isobutylene and 2-butene under the same conditions.20 Methylcyclopentane is alkylated with propylene in the presence of HBr—AlBr3 (—42°C) to produce l-ethyl-2-methylcyclohexane.21 C12H22 bicyclic compounds are also formed under alkylation conditions.21 22 Cyclohexane, in contrast, requires elevated temperature, and only strong catalysts are effective. HC1—AICI3 catalyzes the cyclohexane-ethylene reaction at 50-60°C to yield mainly dimethyl- and tetra-methylcyclohexanes (rather than mono- and diethylcyclohexanes). The relatively weak boron trifluoride, in turn, is not active in the alkylation of cyclohexane.23... [Pg.218]

The related manufacture of cumene (isopropylbenzene) through the alkylation of benzene with propylene is a further industrially important process, since cumene is used in the synthesis of phenol and acetone. Alkylation with propylene occurs more readily (at lower temperature) with catalysts (but also with hydrogen fluoride and acidic resins) similar to those used with ethylene, as well as with weaker acids, such as supported phosphoric acid (see further discussion in Section 5.5.3). [Pg.239]

In alkylation of benzene with both ethylene and propylene di- and polyalkylates are also formed. In alkylation with propylene 1,2,4,5-tetraisopropylbenzene is the most highly substituted product steric requirements prevent formation of penta-and hexaisopropylbenzene. On the other hand, alkylation of benzene with ethylene readily even yields hexaethylbenzene. Alkylation with higher alkenes occurs more readily than with ethylene or propylene, particularly when the alkenes are branched. Both promoted metal chlorides and protic acids catalyze the reactions. [Pg.239]

Alkylation with isobutylene under similar conditions167 and alkylation with propylene catalyzed by perfluorosulfonic acids,168 in turn, lead to 2-substituted naphthalenes. As was shown by Olah and Olah,169 the kinetic alkylation of naphthalene, even in case of rm-butylation, gives preferentially the 1-isomers, which, however, isomerize very fast to the thermodynamically preferred 2-alkylnaphthalenes. Great care is therefore needed to evaluate kinetic regioselectivities. [Pg.239]

Alkylation processes usually combine isobutane with an alkene or with mixed alkene streams (C3-C5 olefins from FCC units). The best octane ratings are attained when isobutane is alkylated with butylenes. Alkylation of higher-molecular-weight hydrocarbons (>C5) is less economic because of increased probability of side reactions. Phillips developed a technology that combines its triolefin process (metathesis of propylene to produce ethylene and 2-butenes) with alkylation since 2-butenes yield better alkylate than propylene.290 Since ethylene cannot be readily used in protic acid-catalyzed alkylations, a process employing AICI3 promoted by water was also developed.291... [Pg.255]

Mesitylene was alkylated with propylene or 2-propanol in supercritical CO2 using Deloxane, a polysiloxane-supported solid acid catalyst in a continuous flow reactor.406 Monoisopropylation with 100% selectivity occurred with 2-propanol. [Pg.265]

According to another study, Cs entrapped in nanoporous carbon is an active catalyst in the side-chain alkylation with propylene either in the liquid or in the gas phase to form isbutylbenzene as the main product.444... [Pg.268]

Alkylation. Friedel-Crafts alkylation (qv) of benzene with ethylene or propylene to produce ethylbenzene [100-41 -4], CgH10, or isopropylbenzene [98-82-8], C9H12 (cumene) is readily accomplished in the liquid or vapor phase with various catalysts such as BF3 (22), aluminum chloride, or supported polyphosphoric acid. The oldest method of alkylation employs the liquid-phase reaction of benzene with anhydrous aluminum chloride and ethylene (23). Ethylbenzene is produced commercially almost entirely for styrene manufacture. Cumene [98-82-8] is catalytically oxidized to cumene hydroperoxide, which is used to manufacture phenol and acetone. Benzene is also alkylated with C1Q—C20 linear alkenes to produce linear alkyl aromatics. Sulfonation of these compounds produces linear alkane sulfonates (LAS) which are used as biodegradable deteigents. [Pg.40]

Styrene, one of the world s major organic chemicals, is derived from ethylene via ethylbenzene. Several recent developments have occurred with respect to this use for ethylene. One is the production of styrene as a co-product of the propylene oxide process developed by Halcon International (12). In this process, benzene is alkylated with ethylene to ethylbenzene, and the latter is oxidized to ethylbenzene hydroperoxide. This hydroperoxide, in the presence of suitable catalysts, can convert a broad range of olefins to their corresponding oxirane compounds, of which propylene oxide presently has the greatest industrial importance. The ethylbenzene hydroperoxide is converted simultaneously to methylphenyl-carbinol which, upon dehydration, yields styrene. Commercial application of this new development in the use of ethylene will be demonstrated in a plant in Spain in the near future. [Pg.161]

In the petroleum industry, catalytic cracking units provide the major source of olefinic fuels for alkylation. A feedstock from a catalytic cracking units is typified by a Ci/C 4 charge with an approximate composition of propane, 12.7% propylene, 23.6% isobmaiie, 25.0% n-bulane, 6.9% isobutylene, 8.8% 1-butylene, 6.9% and 2-butylene, 16.1%. The butylenes will produce alkylates with octane numbers approximately three units higher than those from propylene. [Pg.55]

Isopropylbenzene (A) is alkylated with propylene (P) using HF catalyst. The mono (B), di (C), tri (D) and tetra (E) derivatives are formed. Relative... [Pg.86]

Friedel-Crafts alkylation of benzo[6]thiophene has received little attention. The published results, which deserve reexamination, indicate that exclusive 3-substitution occurs in some cases, whereas in others, 2-substitution predominates. Benzo[6]thiophene is alkylated with isopropyl chloride, isopropanol, or propene in the presence of various acid catalysts under a variety of reaction conditions to give a mixture of 2- and 3-isopropylbenzo[6]thiophene in which the 2-isomer predominates (78-92%).358 410 In contrast, alkylation with isobutene in the presence of either 80% sulfuric acid415 or 100% phosphoric acid416 is said to afford exclusively 3-/er<-butylbenzo[6]thiophene in yields of 100 and 75%, respectively. In neither case was the structure of the product rigorously confirmed. Likewise, 3-Jeri-amylbenzo [63-thiophene is the exclusive product of alkylation with tert-amyl alcohol in the presence of stannic chloride414 alkylation with pent-l-ene, hex-l-ene, and a Ci8 propylene polymer is also claimed to give... [Pg.257]

ReCl5 has been found to act as a Friedel-Crafts catalyst for the alkylation of benzene with ethylene. Ethylbenzene, x-butylbenzene and hexaethylbenzene were formed.612 When propylene was used in place of ethylene, cumene and di-, tri- and tetra-isopropylbenzenes were obtained.613 Ethylbenzene and anisole were also alkylated with ethylene. A carbonium ion mechanism was proposed, in some cases with dimerization of ethylene preceding alkylation. [Pg.298]

Cumene, discussed under C-3 chemistry, is the second-largest-volume chemical product made from benzene. About 25 percent of manufactured benzene is alkylated with propylene to form cumene. Although its high octane number makes it desirable in gasoline, most cumene is oxidized to the... [Pg.229]


See other pages where Propylene, alkylation with is mentioned: [Pg.403]    [Pg.128]    [Pg.38]    [Pg.172]    [Pg.83]    [Pg.468]    [Pg.305]    [Pg.699]    [Pg.711]    [Pg.714]    [Pg.65]    [Pg.219]    [Pg.493]    [Pg.370]    [Pg.195]    [Pg.1545]    [Pg.14]    [Pg.195]    [Pg.65]    [Pg.123]   
See also in sourсe #XX -- [ Pg.216 , Pg.218 , Pg.219 , Pg.221 , Pg.222 , Pg.239 , Pg.249 , Pg.263 , Pg.264 ]




SEARCH



Alkylation biphenyl with propylene

Alkylation with propylene trimers

Aluminum alkyls reaction with propylene

Propylene alkylates

Propylene alkyls

Propylene side-chain alkylation with

© 2024 chempedia.info