Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions fundamentals

Stoichiometry. The measurement of reactants and products of a chemical reaction. Fundamentals, rule that the combined weights of reactants will equal combined weights of products in reactions going to completion. [Pg.415]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

Deposition by chemical reaction is a vast field tliat cannot be surveyed in tire limited space here. Two particular examples have been selected because tliey illustrate tire close relation between fundamental surface chemistry research... [Pg.2937]

Almost all aspects of the field of chemistry involve tire flow of energy eitlier witliin or between molecules. Indeed, tire occurrence of a chemical reaction between two species implies tire availability of some minimum amount of energy in tire reacting system. The study of energy transfer processes is tluis a topic of fundamental importance in chemistry. Energy transfer in gases is of particular interest partly because very sophisticated methods have been developed to study such events and partly because gas phase processes lend tliemselves to very complete and detailed tlieoretical analysis. [Pg.2996]

The concept of phase change in chemical reactions, was introduced in Section I, where it was shown that it is related to the number of electron pairs exchanged in the course of a reaction. In every chemical reaction, the fundamental law to be observed is the preservation pemiutational symmetry of... [Pg.340]

The prediction of the course and of the products of a chemical reaction is of fundamental interest as it concerns a problem with which chemist.s arc con.stantly faced in their day-to-day work. They try to solve such questions by making predictions based on analogy, drawing from their experience acquired in their long training or gathered by making a series of experiments. [Pg.543]

Many globular proteins are enzymes They accelerate the rates of chemical reactions m biological systems but the kinds of reactions that take place are the fundamental reactions of organic chemistry One way m which enzymes accelerate these reactions is by bringing reactive func tions together m the presence of catalytically active functions of the protein... [Pg.1152]

Measurements usually consist of a unit and a number expressing the quantity of that unit. Unfortunately, many different units may be used to express the same physical measurement. For example, the mass of a sample weighing 1.5 g also may be expressed as 0.0033 lb or 0.053 oz. For consistency, and to avoid confusion, scientists use a common set of fundamental units, several of which are listed in Table 2.1. These units are called SI units after the Systeme International d Unites. Other measurements are defined using these fundamental SI units. For example, we measure the quantity of heat produced during a chemical reaction in joules, (J), where... [Pg.12]

The power law developed above uses the ratio of the two different shear rates as the variable in terms of which changes in 17 are expressed. Suppose that instead of some reference shear rate, values of 7 were expressed relative to some other rate, something characteristic of the flow process itself. In that case Eq. (2.14) or its equivalent would take on a more fundamental significance. In the model we shall examine, the rate of flow is compared to the rate of a chemical reaction. The latter is characterized by a specific rate constant we shall see that such a constant can also be visualized for the flow process. Accordingly, we anticipate that the molecular theory we develop will replace the variable 7/7. by a similar variable 7/kj, where kj is the rate constant for the flow process. [Pg.87]

Each isomer has its individual set of physical and chemical properties however, these properties are similar (Table 6). The fundamental chemical reactions for pentanes are sulfonation to form sulfonic acids, chlorination to form chlorides, nitration to form nitropentanes, oxidation to form various compounds, and cracking to form free radicals. Many of these reactions are used to produce intermediates for the manufacture of industrial chemicals. Generally the reactivity increases from a primary to a secondary to a tertiary hydrogen (37). Other properties available but not Hsted are given in equations for heat capacity and viscosity (34), and saturated Hquid density (36). [Pg.403]

The lead storage battery, the largest single user of lead and its compounds, is made possible by the high degree of reversibiUty, both chemical and physical, in the fundamental chemical reaction... [Pg.67]

Theory of Calcination. The reversible reaction involved in the calcination and recarbonation of lime—limestone is one of the simplest and most fundamental of all chemical reactions. In practice, lime burning can be quite complex, however, and many empirical modifications are often necessary for efficient performance. [Pg.170]

Cumene Process. There are several Hcensed processes to produce phenol which are based on cumene (qv) (1,8—11). AH of these processes consist of two fundamental chemical reactions cumene is oxidized with air to form cumene hydroperoxide, and cumene hydroperoxide is cleaved to yield phenol and acetone. In this process, approximately 0.46 kg of acetone and 0.75 kg of phenol are produced per kg of cumene feedstock. [Pg.288]

Mercerized cellulose fibers have improved luster and do not shrink further. One of the main reasons for mercerizing textiles is to improve their receptivity to dyes. This improvement may result more from the dismption of the crystalline regions rather than the partial conversion to a new crystal stmcture. A good example of the fundamental importance of the particular crystal form is the difference in rate of digestion by bacteria. Bacteria from cattle mmen rapidly digest Cellulose I but degrade Cellulose II very slowly (69). Thus aHomorphic form can be an important factor in biochemical reactions of cellulose as well as in some conventional chemical reactions. [Pg.241]

Brotz, Fundamentals of Chemical Reaction Engineeting, Addison-Wesley, 1965. [Pg.683]

Computer simulation techniques offer the ability to study the potential energy surfaces of chemical reactions to a high degree of quantitative accuracy [4]. Theoretical studies of chemical reactions in the gas phase are a major field and can provide detailed insights into a variety of processes of fundamental interest in atmospheric and combustion chemistry. In the past decade theoretical methods were extended to the study of reaction processes in mesoscopic systems such as enzymatic reactions in solution, albeit to a more approximate level than the most accurate gas-phase studies. [Pg.221]

Such structural changes are a consequence of chemical reactions of which the most common are oxidation, ozone attack, dehydrochlorination and ultraviolet attack. (Reactions due to high-energy radiation or to high temperature are not considered here as causing natural aging.) Over the years many materials have been introduced as antioxidants, antiozonants, dehydrochlorination stabilisers and ultraviolet absorbers—originally on an empirical basis but today more and more as the result of fundamental studies. Each of these additive types will be eonsidered in turn. [Pg.134]

The two main principles involved in establishing conditions for performing a reaction are chemical kinetics and thermodynamics. Chemical kinetics is the study of rate and mechanism by which one chemical species is converted to another. The rate is the mass in moles of a product produced or reactant consumed per unit time. The mechanism is the sequence of individual chemical reaction whose overall result yields the observed reaction. Thermodynamics is a fundamental of engineering having many applications to chemical reactor design. [Pg.59]

Sada, E., Kumazawa, H. and Aoyama, M., 1988. Reaction kinetics and controls of size and shape of geothite fine particles in the production of ferrous hydroxide. Chemical Engineering Fundamentals, 71, 73-82. [Pg.321]

Yagi, H., Nagashima, S. and Hikita, H., 1988. Semibatch precipitation accompanying gas-liquid reaction. Chemical Engineering Fundamentals, 65, 109-119. [Pg.327]

It seems evident therefore that the unsatisfied affinity of an odoriferous body plays a fundamental part in the production of its odour by reason of one or more chemical reactions taking place in the olfactory organ the reactions must necessarily be complicated and rapid. They are at present entirely unknown and problematical, but no very great progress in the knowledge of this subject is likely to be made until the chemical properties of the osmoceptors have been determined. [Pg.37]


See other pages where Chemical reactions fundamentals is mentioned: [Pg.602]    [Pg.165]    [Pg.602]    [Pg.165]    [Pg.938]    [Pg.2798]    [Pg.2926]    [Pg.3013]    [Pg.3048]    [Pg.98]    [Pg.341]    [Pg.62]    [Pg.6]    [Pg.3]    [Pg.5]    [Pg.260]    [Pg.109]    [Pg.474]    [Pg.383]    [Pg.395]    [Pg.432]    [Pg.19]    [Pg.2311]    [Pg.1]    [Pg.6]    [Pg.35]    [Pg.1116]    [Pg.3]    [Pg.183]   
See also in sourсe #XX -- [ Pg.375 , Pg.376 , Pg.377 , Pg.378 , Pg.379 , Pg.380 , Pg.381 , Pg.382 , Pg.383 , Pg.384 , Pg.385 ]




SEARCH



© 2024 chempedia.info