Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeate-side concentration polarization

An illustrative example for permeate-side concentration polarization is the per-vaporation of vanillin, a high-boiling aroma compound. The boiling point of vanillin is about 558 K and its saturation vapor pressure correspondingly low (0.29 Pa at... [Pg.280]

A phenomenon that is particularly important in the design of reverse osmosis units is that of concentration polarization. This occurs on the feed-side (concentrated side) of the reverse osmosis membrane. Because the solute cannot permeate through the membrane, the concentration of the solute in the liquid adjacent to the surface of the membrane is greater than that in the bulk of the fluid. This difference causes mass transfer of solute by diffusion from the membrane surface back to the bulk liquid. The rate of diffusion back into the bulk fluid depends on the mass transfer coefficient for the boundary layer on feed-side. Concentration polarization is the ratio of the solute concentration at the membrane surface to the solute concentration in the bulk stream. Concentration polarization causes the flux of solvent to decrease since the osmotic pressure increases as the boundary layer concentration increases and the overall driving force (AP - An) decreases. [Pg.197]

In vapor permeation, feed-side concentration polarization is much less prone to occur than in pervaporation, owing to the high mass-transfer rate of the solute in the vapor feed phase. In fact, this feature is one of the main factors that distinguish the two processes. [Pg.279]

RO is a membrane-based process that is used to remove solutes of relatively low molecular weight that are in solution. As an example, almost pure water can be obtained from sea water by using RO, which will filter out molecules of NaCl and other salts. The driving potential for water permeation is the difference in hydraulic pressure. A pressure that is higher than the osmotic pressure ofthe solution (which itself could be quite high if the molecular weights of the solutes are small) must be applied to the solution side of the membrane. RO also involves the concentration polarization of solute molecules. [Pg.134]

The layer of solution immediately adjacent to the membrane surface becomes depleted in the permeating solute on the feed side of the membrane and enriched in this component on the permeate side. Equivalent gradients also form for the other component. This concentration polarization reduces the permeating component s concentration difference across the membrane, thereby lowering its flux and the membrane selectivity. The importance of concentration polarization depends on the membrane separation process. Concentration polarization can significantly affect membrane performance in reverse osmosis, but it is usually well controlled in industrial systems. On the other hand, membrane performance in ultrafiltration, electrodialysis, and some pervaporation processes is seriously affected by concentration polarization. [Pg.161]

Figure 4.1 also shows the formation of concentration polarization gradients on both sides of the membrane. However, in most membrane processes there is a bulk flow of liquid or gas through the membrane, and the permeate-side composition... [Pg.161]

Figure 4.1 shows the concentration gradients that form on either side of a dialysis membrane. However, dialysis differs from most membrane processes in that the volume flow across the membrane is usually small. In processes such as reverse osmosis, ultrafiltration, and gas separation, the volume flow through the membrane from the feed to the permeate side is significant. As a result the permeate concentration is typically determined by the ratio of the fluxes of the components that permeate the membrane. In these processes concentration polarization gradients form only on the feed side of the membrane, as shown in Figure 4.3. This simplifies the description of the phenomenon. The few membrane processes in which a fluid is used to sweep the permeate side of the membrane,... Figure 4.1 shows the concentration gradients that form on either side of a dialysis membrane. However, dialysis differs from most membrane processes in that the volume flow across the membrane is usually small. In processes such as reverse osmosis, ultrafiltration, and gas separation, the volume flow through the membrane from the feed to the permeate side is significant. As a result the permeate concentration is typically determined by the ratio of the fluxes of the components that permeate the membrane. In these processes concentration polarization gradients form only on the feed side of the membrane, as shown in Figure 4.3. This simplifies the description of the phenomenon. The few membrane processes in which a fluid is used to sweep the permeate side of the membrane,...
In the discussion of concentration polarization to this point, the assumption is made that the volume flux through the membrane is large, so the concentration on the permeate side of the membrane is determined by the ratio of the component fluxes. This assumption is almost always true for liquid separation processes, such as ultrafiltration or reverse osmosis, but must be modified in a few gas separation and pervaporation processes. In these processes, a lateral flow of gas is sometimes used to change the composition of the gas on the permeate side of the membrane. Figure 4.14 illustrates a laboratory gas permeation experiment using this effect. As the pressurized feed gas mixture is passed over the membrane surface, certain components permeate the membrane. On the permeate side of the membrane, a lateral flow of helium or other inert gas sweeps the permeate from the membrane surface. In the absence of the sweep gas, the composition of the gas mixture on the permeate side of the membrane is determined by the flow of components from the feed. If a large flow of sweep gas is used, the partial... [Pg.182]

The hollow fiber membranes are the optimum choice for gas separation modules due to their very high packing density (up to 30,000 m /m may be attained [1]). Figure 4.21 shows alternative configurations for such modules [108]. Modifications of this configuration exist, where possibility for introduction of sweep gas on permeate side is included, or fibers may be arranged transversal to the flow in order to minimize concentration polarization [109,110]. The hollow fiber membranes are usually asymmetric polymers, but composites also exist. Carbon molecular sieve membranes may easily be prepared as hollow fibers by pyrolysis. [Pg.90]

The different solute concentrations on the feed and permeate sides are linked to the volumetric permeate flux in terms of the concentration polarization model, which is based on the stagnant film theory [14] ... [Pg.504]

Permeate flux decreases with an increase in feed concentration. This phenomenon can be attributed to the reduction of the driving force due to decrease of the vapor pressure of the feed solution and exponential increase of viscosity of the feed with increasing concentration. The DCMD flux gradually increases with an increase in temperature difference between feed and cooling water. Lagana et al. [63] reported that the viscosity of apple juice at high concentration induces severe temperature polarization. It may be noted that temperamre polarization is more important than concentration polarization, which is located mainly on the feed side. [Pg.525]

The SGMD is a temperature driven process, and it involves (a) evaporation of water at the hot feed side, (b) transport of water vapor through the pores of hydrophobic membrane, (c) collection of the permeating water vapor into an inert cold sweeping gas, and (d) condensation outside the membrane module. A decrease in driving force has been observed due to polarization effects of both temperature and concentration [80,82]. To calculate both heat and mass transfer through microporous hydrophobic membrane as well as the temperature and concentration polarization layer, the theoretical model suggested by Khayet et al. [58] can be written as... [Pg.530]

Aimar et al. [19] noted that in the UF of complex liquids, such as cheese whey, which contains proteins, salts and casein fragments, concentration polarization, and adsorption and cake formation play a role in flux behavior during crossflow filtration. They may induce osmotic pressure in the retentate side since the chemical potential of the solute-rich polarized layer is lower than that of the permeate, and therefore at equilibrium, a positive osmotic pressure develops in the retentate to equal that of the permeate. The smaller the solute, the greater is its contribution to the osmotic pressure of the liquid, so that in milk, lactose and the minerals have the biggest contribution to osmotic pressure. In skim milk or whey, the osmotic pressure is around 7 bar (700 kPa) and this must be exceeded in RO to commence permeation in UF, only the proteins contribute to the osmotic pressure, which increases exponentially with protein concentration [56]. In any case, a TMP greater than the osmotic pressure is required for solvent to flow from the retentate side to the permeate side. This leads to the reduction in the effectiveness of applied TMP as driving force to permeation. [Pg.653]

On the strip side of the membrane, concentration polarization refers to an increase in the water concentration at and near the strip-membrane interface because of condensation of permeate into the strip solution. At equilibrium, the solutes (osmotic agent) diffuse from the bulk stream towards the membrane wall at the same rate as their concentration is reduced by permeate condensation. Water is transported away from the membrane by convection. [Pg.1987]

Backpulse This is achieved by rapid (typically lasting a fraction of a second) application of periodic counterpressure on the permeate side, typically with the help of an automatic time switch or a microprocessor, to push back a specific (as low as possible) permeate volume in the opposite direction. It is used in many CFF applications (especially with ceramic membranes) as an effective technique to disrupt, reduce or destroy the concentration-polarization boundary layer. Backpulsing also helps to minimize particle/gel infiltration into the microporous structure. Typical backpulse frequencies (cycle times) are in the range of 3 to 10 minute. ... [Pg.333]

The principal disadvantage of this configuration is a phenomenon known as concentration polarization. Concentration polarization is a reduction in the partial pressure driving force, and, consequently, permeation rate, on the shell side of the module due to stagnation of the permeate. [Pg.95]

Industrial-size plate-and-frame modules, for example, consist of a stack of tightly packed membranes over which the feed solution is recirculated (Mulder, 1997). The membranes are separated by spacers and the permeate is withdrawn by a central permeate pipe (Stiirken, 1994). Pressure losses occur on both the feed and the permeate side of the packed membranes and need to be accounted for in the module design. On the feed side, the fluid dynamic conditions over the membrane may be less uniform than on the laboratory scale, resulting in more pronounced concentration polarization. On the permeate side, the packed configuration of the membranes may lead to considerable pressure losses, rendering the instantaneous removal of solutes from the membrane downstream surface more difficult. Both aspects may cause solute fluxes lower than expected (Chapter 3.2) and a possible... [Pg.281]

With pervaporation membranes the water can be removed during the condensation reaction. In this case, a tubular microporous ceramic membrane supplied by ECN [124] was used. The separating layer of this membrane consists of a less than 0.5 mm film of microporous amorphous silica on the outside of a multilayer alumina support. The average pore size of this layer is 0.3-0.4 nm. After addition of the reactants, the reactor is heated to the desired temperature, the recyde of the mixture over the outside of the membrane tubes is started and a vacuum is apphed at the permeate side. In some cases a sweep gas can also be used. The pressure inside the reactor is a function of the partial vapor pressures and the reaction mixture is non-boiling. Although it can be anticipated that concentration polarization will play an important role in these systems, computational fluid dynamics calculations have shown that the membrane surface is effectively refreshed as a result of buoyancy effects [125]. [Pg.248]

The permeate flux, when using an NaCl aqueous solution as the feed, was 25%-30% lower than the obtained permeate flux when distilled water was used as the feed, reflecting the lower vapor pressure of the salt solution. Another reason for the decrease in the DCMD flux is the concentration polarization due to the presence of the NaCl solute in the feed membrane side (Carman 1956 Khayet et al. 2005b Qtaishat et al. 2009a,b). Referring to the experiments with a salt solution, the solute separation factor (Equation 6.3) is defined as... [Pg.174]

The analysis procedure developed in the previous section for gas permeation forms the basis for analyzing RO. However, the RO analysis is more complicated because of 1) osmotic pressure, which is included in Eq. fl7-12T and 2) mass transfer rates are much lower in liquid systems. Since the mass transfer rates are relatively low, the wt frac of solute at the membrane wall x will be greater than the wt frac of solute in the bulk of the retentate x, . This buildup of solute at the membrane surface occurs because the movement of solvent through the membrane carries solute with it to the membrane wall. Since the solute does not pass through the semipermeable membrane, its concentration will build up at the wall and it must back diffuse from the wall to the bulk solution. This phenomenon, concentration polarization, is illustrated in Figure 17-10. Concentration polarization has a major effect on the separations obtained in RO and UF (see next section). Since concentration polarization causes x > Xp the osmotic pressure becomes higher on the retentate side and, following Eq. fl7-12). the flux declines. Concentration polarization will also increase Ax in Eq. tl7-13 and flux of solute may increase, which is also undesirable. In addition, since concentration polarization increases solute concentration, precipitation becomes more likely. [Pg.748]


See other pages where Permeate-side concentration polarization is mentioned: [Pg.279]    [Pg.279]    [Pg.52]    [Pg.134]    [Pg.161]    [Pg.405]    [Pg.440]    [Pg.175]    [Pg.74]    [Pg.115]    [Pg.168]    [Pg.214]    [Pg.2207]    [Pg.411]    [Pg.141]    [Pg.211]    [Pg.368]    [Pg.465]    [Pg.532]    [Pg.2191]    [Pg.63]    [Pg.244]    [Pg.650]    [Pg.830]    [Pg.54]    [Pg.141]    [Pg.123]    [Pg.2624]    [Pg.789]    [Pg.222]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Concentration polarization

Permeate Side

Permeate concentration

Permeate-side concentration

Polar side

© 2024 chempedia.info