Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paraffins molecular

Similar to the soot formation in the high temperature range, PM precursor formation at intermediate temperatures is also influenced by the paraffinic molecular structure. It was proposed that the soot formation yield decreases in the order cycloparaffin > 2-branched iso-paraffin > 1-branched iso-paraffin > normal... [Pg.39]

This chapter reviews the adsorptive separations of various classes of non-aromatic hydrocarbons. It covers three different normal paraffin molecular weight separations from feedstocks that range from naphtha to kerosene, the separation of mono-methyl paraffins from kerosene and the separation of mono-olefins both from a mixed C4 stream and from a kerosene stream. In addition, we also review the separation of olefins from a C10-16 stream and review simple carbohydrate separations and various acid separations. [Pg.249]

A widely used interpretation of the compensation law is based on a two-site model proposed by Hoffman et al. (22) to describe crystalline relaxations in n-paraffins. Molecular movements are assumed to involve an entire short-chain molecule, the length of the molecules corresponding to the thickness of crystallites. Under these assumptions, the relaxation time is expressed by an Eyring equation (Equation 1E9), with... [Pg.365]

Fig. 8.10. GC-H-oaTOF-MS total ion chromatogram and averaged mass spectrum of Q-C44 -paraffins. The masses of the paraffin molecular ions are all accurate. Reproduced from Ref. [32] with permission. American Chemical Society, 2002. Fig. 8.10. GC-H-oaTOF-MS total ion chromatogram and averaged mass spectrum of Q-C44 -paraffins. The masses of the paraffin molecular ions are all accurate. Reproduced from Ref. [32] with permission. American Chemical Society, 2002.
For physical processes, two examples are the elimination of normal paraffins from a mixture by their adsorption on 5 A molecular sieves or by their selective formation of solids with urea (clathrates)... [Pg.26]

Because of the differences existing between the quality of different distillation cuts and those resulting from their downstream processing, it is useful to group them according to a major characteristic. That is, they are grouped into the three principal chemical families which constitute them paraffins, naphthenes and aromatics. From a molecular point of view, their chemical reactivities follow this order ... [Pg.39]

As in the case of density or specific gravity, the refractive index, n, for hydrocarbons varies in relation to their chemical structures. The value of n follows the order n paraffins < n naphthenes < n aromatics and it increases with molecular weight. [Pg.42]

With the accumulation of results obtained from various and complex analyses of narrow cuts (Waterman method), correlations have been found f ctween refractive index, specific gravity and molecular weight on one hand, and percentages of paraffinic, naphthenic and aromatic carbon on the other. [Pg.42]

The solubility of hydrocarbon liquids from the same chemical family diminishes as the molecular weight increases. This effect is particularly sensitive thus in the paraffin series, the solubility expressed in mole fraction is divided by a factor of about five when the number of carbon atoms is increased by one. The result is that heavy paraffin solubilities are extremely small. The polynuclear aromatics have high solubilities in water which makes it difficult to eliminate them by steam stripping. [Pg.168]

Paraffins consist mainly of straight chain alkanes, with a very small proportion of isoalkanes and cycloalkanes. Their freezing point is generally between 30°C and 70°C, the average molecular weight being around 350. When present, aromatics appear only in trace quantities. [Pg.285]

Waxes are less well defined aliphatic mixtures of n-alkanes, isoalkanes and cycloalkanes in various proportions. Their average molecular weights are higher than those of the paraffins from 600 to 800. [Pg.285]

Deasphalting is a liquid-liquid separation operation that extracts the last of the easily convertible hydrocarbons from the vacuum residue. Solvents enipl ec) are light paraffins propane, butane, and pentane. The yimd In deasphalted oil increases with the molecular weight of the solvent, but its quality decreases. 5 uxct... [Pg.368]

Feedstocks are natural gas, refinery fuel gas, LPG and paraffinic naphthas. After elimination of CO2, the last traces of contaminants are converted to methane (methanation) or eliminated by adsorption on molecular sieves (PSA process). [Pg.391]

Alkylation combines lower-molecular-weight saturated and unsaturated hydrocarbons (alkanes and alkenes) to produce high-octane gasoline and other hydrocarbon products. Conventional paraffin-olefin (alkane-alkene) alkylation is an acid-catalyzed reaction, such as combining isobutylene and isobutane to isooctane. [Pg.102]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

Another example of unique selectivities is the separation of olefins from paraffins in feed mixtures containing about five successive molecular sizes, eg, C Q to Liquid—Hquid extraction might be considered for this separation. However, polar solvents give solubiHty patterns of the type shown in Figure... [Pg.291]

However, ia some cases, the answer is not clear. A variety of factors need to be taken iato consideration before a clear choice emerges. Eor example, UOP s Molex and IsoSiv processes are used to separate normal paraffins from non-normals and aromatics ia feedstocks containing C —C2Q hydrocarbons, and both processes use molecular sieve adsorbents. However, Molex operates ia simulated moving-bed mode ia Hquid phase, and IsoSiv operates ia gas phase, with temperature swiag desorption by a displacement fluid. The foUowiag comparison of UOP s Molex and IsoSiv processes iadicates some of the primary factors that are often used ia decision making ... [Pg.303]

Cblorina.ted Pa.ra.ffins, The term chlotinated paraffins covers a variety of compositions. The prime variables are molecular weight of the starting paraffin and the chlorine content of the final product. Typical products contain from 12—24 carbons and from 40—70 wt % chlorine. Liquid chlotinated paraffins are used as plasticizers (qv) and flame retardants ia paint (qv) and PVC formulations. The soHd materials are used as additive flame retardants ia a variety of thermoplastics. In this use, they are combiaed with antimony oxide which acts as a synergist. Thermal stabilizers, such as those used ia PVC (see vinyl polymers), must be used to overcome the inherent thermal iastabiUty. [Pg.469]

Anhydrous silver hexafluorophosphate [26042-63-7] AgPF, as well as other silver fluorosalts, is unusual in that it is soluble in ben2ene, toluene, and xylene and forms 1 2 molecular crystalline complexes with these solvents (91). Olefins form complexes with AgPF and this characteristic has been used in the separation of olefins from paraffins (92). AgPF also is used as a catalyst. Lithium hexafluorophosphate [21324-40-3] LiPF, as well as KPF and other PF g salts, is used as electrolytes in lithium anode batteries (qv). [Pg.227]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Highly pure / -hexane can be produced by adsorption on molecular sieves (qv) (see Adsorption, liquid separation) (43). The pores admit normal paraffins but exclude isoparaffins, cycloparaffins, and aromatics. The normal paraffins are recovered by changing the temperature and/or pressure of the system or by elution with a Hquid that can be easily separated from / -hexane by distillation. Other than ben2ene, commercial hexanes also may contain small concentrations of olefins (qv) and compounds of sulfur, oxygen, and chlorine. These compounds caimot be tolerated in some chemical and solvent appHcations. In such cases, the commercial hexanes must be purified by hydrogenation. [Pg.405]


See other pages where Paraffins molecular is mentioned: [Pg.39]    [Pg.24]    [Pg.191]    [Pg.46]    [Pg.131]    [Pg.83]    [Pg.39]    [Pg.24]    [Pg.191]    [Pg.46]    [Pg.131]    [Pg.83]    [Pg.2]    [Pg.49]    [Pg.76]    [Pg.444]    [Pg.445]    [Pg.572]    [Pg.2789]    [Pg.79]    [Pg.183]    [Pg.235]    [Pg.284]    [Pg.292]    [Pg.459]    [Pg.82]    [Pg.193]    [Pg.193]    [Pg.341]    [Pg.344]    [Pg.364]    [Pg.65]    [Pg.198]    [Pg.237]    [Pg.448]    [Pg.449]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



High Molecular Weight n-Paraffins

High molecular weight paraffins

Low molecular weight paraffins

Molecular sieve paraffin separation adsorbent

© 2024 chempedia.info