Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paraffin catalysts

Thermal decomposition of solids, resulting in liberation of a metal (see nickel formate-paraffin catalyst, p. 1631). [Pg.1613]

C. It occurs in natural gas. May prepared by reduction of ethene or ethyne by hydrogen under pressure in the presence of a nickel catalyst, or by the electrolysis of a solution of potassium elhanoate. It has the general properties of the paraffins. Used in low-temperature refrigeration plant. [Pg.164]

Technically, acetaldehyde is mainly made by the oxidation of ethylene using a CuCl2/PdCl2 catalyst system.. Although some acetic acid is still prepared by the catalytic oxidation of acetaldehyde, the main process is the catalytic oxidation of paraffins, usually -butane. [Pg.74]

Mobil s High Temperature Isomerization (MHTI) process, which was introduced in 1981, uses Pt on an acidic ZSM-5 zeoHte catalyst to isomerize the xylenes and hydrodealkylate EB to benzene and ethane (126). This process is particularly suited for unextracted feeds containing Cg aHphatics, because this catalyst is capable of cracking them to light paraffins. Reaction occurs in the vapor phase to produce a PX concentration slightly higher than equiHbrium, ie, 102—104% of equiHbrium. EB conversion is about 40—65%, with xylene losses of about 2%. Reaction conditions ate temperature of 427—460°C, pressure of 1480—1825 kPa, WHSV of 10—12, and a H2/hydtocatbon molar ratio of 1.5—2 1. Compared to the MVPI process, the MHTI process has lower xylene losses and lower formation of heavy aromatics. [Pg.422]

C with low conversion (10—15%) to limit dichloroalkane and trichloroalkane formation. Unreacted paraffin is recycled after distillation and the predominant monochloroalkane is dehydrochlorinated at 300°C over a catalyst such as nickel acetate [373-02-4]. The product is a linear, random, primarily internal olefin. [Pg.459]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

Mobil MTG and MTO Process. Methanol from any source can be converted to gasoline range hydrocarbons using the Mobil MTG process. This process takes advantage of the shape selective activity of ZSM-5 zeoHte catalyst to limit the size of hydrocarbons in the product. The pore size and cavity dimensions favor the production of C-5—C-10 hydrocarbons. The first step in the conversion is the acid-catalyzed dehydration of methanol to form dimethyl ether. The ether subsequendy is converted to light olefins, then heavier olefins, paraffins, and aromatics. In practice the ether formation and hydrocarbon formation reactions may be performed in separate stages to faciHtate heat removal. [Pg.165]

Anhydrous silver hexafluorophosphate [26042-63-7] AgPF, as well as other silver fluorosalts, is unusual in that it is soluble in ben2ene, toluene, and xylene and forms 1 2 molecular crystalline complexes with these solvents (91). Olefins form complexes with AgPF and this characteristic has been used in the separation of olefins from paraffins (92). AgPF also is used as a catalyst. Lithium hexafluorophosphate [21324-40-3] LiPF, as well as KPF and other PF g salts, is used as electrolytes in lithium anode batteries (qv). [Pg.227]

Uses. Fluorosulfuric acid serves as catalyst in the alkylation (qv) of branched-chain paraffins (53—58) and aromatic compounds (59), and in the polymeriza tion of monoolefins (60) and rosin (61). Addition of strong Lewis acids, such as SbF, TaF, and NbF, to fluorosulfuric acid markedly increases... [Pg.249]

The mixture of carbon monoxide and hydrogen is enriched with hydrogen from the water gas catalytic (Bosch) process, ie, water gas shift reaction, and passed over a cobalt—thoria catalyst to form straight-chain, ie, linear, paraffins, olefins, and alcohols in what is known as the Fisher-Tropsch synthesis. [Pg.62]

The principal class of reactions in the FCC process converts high boiling, low octane normal paraffins to lower boiling, higher octane olefins, naphthenes (cycloparaffins), and aromatics. FCC naphtha is almost always fractionated into two or three streams. Typical properties are shown in Table 5. Properties of specific streams depend on the catalyst, design and operating conditions of the unit, and the cmde properties. [Pg.184]

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

A fundamentally different reaction system is under development by Air Products and Chem Systems (23). In this system, synthesis gas is bubbled through a slurry consisting of micrometer-sized methanol catalyst particles suspended in a paraffinic mineral oil. The Hquid phase serves as the heat sink to remove the heat of reaction. [Pg.280]

Catalysis. As of mid-1995, zeoHte-based catalysts are employed in catalytic cracking, hydrocracking, isomerization of paraffins and substituted aromatics, disproportionation and alkylation of aromatics, dewaxing of distillate fuels and lube basestocks, and in a process for converting methanol to hydrocarbons (54). [Pg.457]

Paraffin Isomerization. Another weU-estabhshed commercial process which employs zeoflte catalysts is the isomerization of normal paraffins into higher octane, branched isomers. The catalyst for the Hysomet process of the Shell Oil Co. is dual-functional, and consists of a highly acidic, latge-pote zeoflte loaded with a small amount of a noble-metal hydrogenation component. This catalyst possesses the same... [Pg.458]

The solvent is 28 CC-olefins recycled from the fractionation section. Effluent from the reactors includes product a-olefins, unreacted ethylene, aluminum alkyls of the same carbon number distribution as the product olefins, and polymer. The effluent is flashed to remove ethylene, filtered to remove polyethylene, and treated to reduce the aluminum alkyls in the stream. In the original plant operation, these aluminum alkyls were not removed, resulting in the formation of paraffins (- 1.4%) when the reactor effluent was treated with caustic to kill the catalyst. In the new plant, however, it is likely that these aluminum alkyls are transalkylated with ethylene by adding a catalyst such as 60 ppm of a nickel compound, eg, nickel octanoate (6). The new plant contains a caustic wash section and the product olefins still contain some paraffins ( 0.5%). After treatment with caustic, cmde olefins are sent to a water wash to remove sodium and aluminum salts. [Pg.439]

UOP Inc. is the key source of technology in this area, having numerous patents and over 70 units operating worldwide (12). The dehydrogenation catalyst is usually a noble metal such as platinum. Eor a typical conversion, the operating temperature is 300—500°C at 100 kPa (1 atm) (13) hydrogen-to-paraffin feed mole ratio is 5 1. [Pg.441]

Catalytic dewaxiag (32) is a hydrocrackiag process operated at elevated temperatures (280—400°C) and pressures, 2,070—10,350 kPa (300—1500 psi). However, the conditions for a specific dewaxiag operatioa depead oa the aature of the feedstock and the product pour poiat required. The catalyst employed for the process is a mordenite-type catalyst that has the correct pore stmcture to be selective for normal paraffin cracking. Platinum on the catalyst serves to hydrogenate the reactive iatermediates so that further paraffin degradation is limited to the initial thermal reactions. [Pg.212]

Another catalytic dewaxiag process also iavolves selective cracking of aormal paraffias and those paraffins that may have minor branching ia the chaia. la the process (Fig. 8), the catalyst can be reactivated to fresh activity by relatively mild nonoxidative treatment. The time allowed between reactivations is a function of the feedstock after numerous reactivations it is possible that there will be coke buildup on the catalyst. [Pg.212]

AlClj Alkylation Process. The first step in the AIQ. process is the chlorination of / -paraffins to form primary monochloroparaffin. Then in the second step, the monochloroparaffin is alkylated with benzene in the presence of AIQ. catalyst (75,76). Considerable amounts of indane (2,3-dihydro-lH-indene [496-11-7]) and tetralin (1,2,3,4-tetrahydronaphthalene [119-64-2]) derivatives are formed as by-products because of the dichlorination of paraffins in the first step (77). Only a few industrial plants built during the early 1960s use this technology to produce LAB from linear paraffins. The C q—CC olefins also can be alkylated with benzene using this catalyst system. [Pg.51]

HP Alkylation Process. The most widely used technology today is based on the HE catalyst system. AH industrial units built in the free world since 1970 employ this process (78). During the mid-1960s, commercial processes were developed to selectively dehydrogenate linear paraffins to linear internal olefins (79—81). Although these linear internal olefins are of lower purity than are a olefins, they are more cost-effective because they cost less to produce. Furthermore, with improvement over the years in dehydrogenation catalysts and processes, such as selective hydrogenation of diolefins to monoolefins (82,83), the quaUty of linear internal olefins has improved. [Pg.51]

Future Developments. The most recent advance in detergent alkylation is the development of a soHd catalyst system. UOP and Compania Espanola de Petroleos SA (CEPSA) have disclosed the joint development of a fixed-bed heterogeneous aromatic alkylation catalyst system for the production of LAB. Petresa, a subsidiary of CEPSA, has announced plans for the constmction of a 75,000 t/yr LAB plant in Quebec, Canada, that will use the UOP / -paraffin dehydrogenation process and the new fixed-bed alkylation process (85). [Pg.52]

VL few, inexpensive not stoichiometric requires catalyst sulfoxidation of paraffins ... [Pg.76]


See other pages where Paraffin catalysts is mentioned: [Pg.530]    [Pg.530]    [Pg.72]    [Pg.67]    [Pg.1631]    [Pg.1903]    [Pg.530]    [Pg.530]    [Pg.72]    [Pg.67]    [Pg.1631]    [Pg.1903]    [Pg.258]    [Pg.883]    [Pg.1058]    [Pg.458]    [Pg.163]    [Pg.79]    [Pg.81]    [Pg.81]    [Pg.89]    [Pg.185]    [Pg.344]    [Pg.237]    [Pg.353]    [Pg.467]    [Pg.212]    [Pg.95]    [Pg.45]    [Pg.52]    [Pg.218]    [Pg.525]    [Pg.102]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Catalysts heavy paraffins isomerization

Catalysts paraffin/olefin conversion

Dehydrocyclization, paraffins catalysts

Nickel formate-paraffin catalyst

Paraffin continuous catalyst regeneration

Paraffinic feed with octane catalysts

Paraffins conversion catalysts

© 2024 chempedia.info