Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dehydration acid catalyzed

In his cephalosporin synthesis methyl levulinate was condensed with cysteine in acidic medium to give a bicyclic thiazolidine. One may rationalize the regioselective formation of this bicycle with the assumption that in the acidic reaction mixture the tMoI group is the only nucleophile present, which can add to the ketone. Intramolecular amide formation from the methyl ester and acid-catalyzed dehydration would then lead to the thiazolidine and y-lactam rings. The stereochemistry at the carboxylic acid a-... [Pg.313]

Zaitsev s rule as applied to the acid catalyzed dehydration of alcohols is now more often expressed in a different way elimination reactions of alcohols yield the most highly substituted alkene as the major product Because as was discussed in Section 5 6 the most highly substituted alkene is also normally the most stable one Zaitsev s rule is sometimes expressed as a preference for predominant formation of the most stable alkene that could arise by elimination... [Pg.205]

These common features suggest that carbocations are key intermediates m alcohol dehydra tions just as they are m the reaction of alcohols with hydrogen halides Figure 5 6 portrays a three step mechanism for the acid catalyzed dehydration of tert butyl alcohol Steps 1 and 2 describe the generation of tert butyl cation by a process similar to that which led to its for matron as an intermediate m the reaction of tert butyl alcohol with hydrogen chloride... [Pg.206]

FIGURE 5 6 The El mecha nism for the acid catalyzed dehydration of tert butyl alcohol... [Pg.207]

In the acid catalyzed dehydration of 2 methyl 1 propanol what carbocation would be formed if a hydride shift accompanied cleavage of the carbon-oxygen bond in the alkyloxonium lon" What ion would be formed as a result of a methyl shift" Which pathway do you think will predominate a hydnde shift or a methyl shift" ... [Pg.228]

In Problem 5 17 (Section 5 13) we saw that acid catalyzed dehydration of 2 2 dimethyl cyclohexanol afforded 1 2 dimethylcyclohexene To explain this product we must wnte a mecha nism for the reaction in which a methyl shift transforms a secondary carbocation to a tertiary one Another product of the dehydration of 2 2 dimethylcyclohexanol is isopropyhdenecyclopentane Wnte a mechanism to rationalize its formation... [Pg.229]

Acid catalyzed dehydration of 2 2 dimethyl 1 hexanol gave a number of isomeric alkenes including 2 methyl 2 heptene as shown in the following formula... [Pg.229]

You may have noticed that the acid catalyzed hydration of an alkene and the acid catalyzed dehydration of an alcohol are the reverse of each other... [Pg.249]

IS reversible with respect to reactants and products so each tiny increment of progress along the reaction coordinate is reversible Once we know the mechanism for the for ward phase of a particular reaction we also know what the intermediates and transition states must be for the reverse In particular the three step mechanism for the acid catalyzed hydration of 2 methylpropene m Figure 6 9 is the reverse of that for the acid catalyzed dehydration of tert butyl alcohol m Figure 5 6... [Pg.250]

We now have a new problem Where does the necessary alkene come from Alkenes are prepared from alcohols by acid catalyzed dehydration (Section 5 9) or from alkyl halides by dehydrohalogenation (Section 5 14) Because our designated starting material is tert butyl alcohol we can combine its dehydration with bromohydrm formation to give the correct sequence of steps... [Pg.266]

As a method for the preparation of alkenes a weakness in the acid catalyzed dehydration of alcohols IS that the initially formed alkene (or mixture of alkenes) sometimes isomenzes under the conditions of its formation Write a stepwise mechanism showing how 2 methyl 1 butene might isomenze to 2 methyl 2 butene in the presence of sulfuric acid... [Pg.278]

We have seen this situation before m the reaction of alcohols with hydrogen halides (8ection 4 11) m the acid catalyzed dehydration of alcohols (8ection 5 12) and m the conversion of alkyl halides to alkenes by the El mechanism (8ection 5 17) As m these other reactions an electronic effect specifically the stabilization of the carbocation intermediate by alkyl substituents is the decisive factor The more stable the carbo cation the faster it is formed... [Pg.342]

Acid catalyzed dehydration of benzyhc alcohols is a useful route to alkenylben zenes as is dehydrohalogenation under E2 conditions... [Pg.446]

Addition of phenylmagnesium bromide to 4 tert butylcyclohexanone gives two isomeric ter tiary alcohols as products Both alcohols yield the same alkene when subjected to acid catalyzed dehydration Suggest reasonable structures for these two alcohols... [Pg.620]

Mobil MTG and MTO Process. Methanol from any source can be converted to gasoline range hydrocarbons using the Mobil MTG process. This process takes advantage of the shape selective activity of ZSM-5 zeoHte catalyst to limit the size of hydrocarbons in the product. The pore size and cavity dimensions favor the production of C-5—C-10 hydrocarbons. The first step in the conversion is the acid-catalyzed dehydration of methanol to form dimethyl ether. The ether subsequendy is converted to light olefins, then heavier olefins, paraffins, and aromatics. In practice the ether formation and hydrocarbon formation reactions may be performed in separate stages to faciHtate heat removal. [Pg.165]

By substituting paraldehyde for glycerol, 2-methylquinoline [27601-00-9] may be synthesized. The Skraup synthesis is regarded as an example of the broader Doebner-von Miller synthesis. In the case of the Skraup synthesis, the glycerol undergoes an acid-catalyzed dehydration to provide a small concentration of acrolein that is the reactive species. If acrolein itself is used as a reactant, it would polymerize. Crotonaldehyde is the reactive intermediate in the Doebner-von Miller synthesis (28). [Pg.230]

Manufacturing. Almost all the THE in the United States is currendy produced by the acid-catalyzed dehydration of 1,4-butanediol [10-63-4]. Only one plant in the United States still makes THE by the hydrogenation of furfural (29). Du Pont recendy claimed a new low cost process for producing THE from / -butane that they plan to commercialize in 1995 (30—32). The new process transport-bed oxidizes / -butane to cmde maleic anhydride, then follows with a hydrogen reduction of aqueous maleic acid to THE (30). [Pg.429]

The course of the acid catalyzed dehydration of 1,4-diketones to furans, known as the Paal-Knorr method (1884CB2756), entails the formal addition of the enol of one carbonyl group to the other carbonyl. Examples which illustrate some of the routes used to make the necessary 1,4-diketones are shown in Scheme 13. Few examples are known of the preparation of the other heterocycles by this general approach using isolated intermediates, although some of the ring closures discussed in Section 3.03.3.1.1 are mechanistically equivalent. One example of the preparation of a hydroxypyrrole is included in Scheme 13 <59AC(R)2075). [Pg.97]

The Hammett correlation of the acid-catalyzed dehydration of 1,2-diarylethanols has been studied. [Pg.403]

Acid-catalyzed dehydration (Section 5.9) This is a frequently used procedure for the preparation of alkenes. The order of alcohol reactivity parallels the order of carbocation stability R3C" > R2CH " > RCH2 ". Benzylic alcohols react readily. Rearrangements are sometimes observed. [Pg.636]

Section III,C,2,b) confirms its tautomeric nature, which is also indicated by the fact that harmahne forms a pyr-iV -acetyl derivative (cf. Section IV,B, 2). It is unnecessary, however, to postulate the existence of such an equilibrium. In the acid-catalyzed dehydration. [Pg.191]


See other pages where Dehydration acid catalyzed is mentioned: [Pg.317]    [Pg.208]    [Pg.226]    [Pg.373]    [Pg.636]    [Pg.720]    [Pg.811]    [Pg.357]    [Pg.470]    [Pg.167]    [Pg.208]    [Pg.226]    [Pg.250]    [Pg.373]    [Pg.720]    [Pg.811]   
See also in sourсe #XX -- [ Pg.41 ]

See also in sourсe #XX -- [ Pg.41 ]




SEARCH



2 Methyl 2 propanol acid catalyzed dehydration

Acid-Catalyzed Dehydration of an Alcohol

Acid-catalyzed dehydration condition

Acid-catalyzed dehydration, of alcohols

Acid-catalyzed dehydration, pathways

Acid-catalyzed intramolecular dehydration

Acids, dehydration

Alcohols, dehydration acid catalyzed

Aromatic hydrate acid-catalyzed dehydration

Chemically amplified negative phenolic resists based on acid-catalyzed condensation intermolecular dehydration cross-linking reactions

Chemically amplified negative resists based on acid-catalyzed intramolecular dehydration

Dehydration acid-base catalyzed

Dehydration reactions acid-catalyzed

Ethylene acid-catalyzed dehydration reactions

Lewis acid catalyzed dehydration

Primary alcohols acid-catalyzed dehydration

Review) Acid-Catalyzed Dehydration of an Alcohol

© 2024 chempedia.info