Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paper dispersion acrylic

In the paper industry, acrylate dispersions are used for clear, greaseproof coatings, as binders for clay coatings, and as heat-sealing adhesives. [Pg.1017]

Uses Monomer for acrylic resins, solvent coatings, adhesives, lube oil additives emulsions for textiles, leather, paper finishing modifier for fibers coating agent for paper dispersant modifier for oils/alkyds in food-contact coatings vise, control agent in cosmetics... [Pg.631]

Emulsion Polymerization. Emulsion polymerization is the most important industrial method for the preparation of acryhc polymers. The principal markets for aqueous dispersion polymers made by emulsion polymerization of acryhc esters are the paint, paper, adhesives, textile, floor pohsh, and leather industries, where they are used principally as coatings or binders. Copolymers of either ethyl acrylate or butyl acrylate with methyl methacrylate are most common. [Pg.168]

Functional derivatives of polyethylene, particularly poly(vinyl alcohol) and poly(acryLic acid) and derivatives, have received attention because of their water-solubility and disposal iato the aqueous environment. Poly(vinyl alcohol) is used ia a wide variety of appHcations, including textiles, paper, plastic films, etc, and poly(acryLic acid) is widely used ia detergents as a builder, a super-absorbent for diapers and feminine hygiene products, for water treatment, ia thickeners, as pigment dispersant, etc (see Vinyl polymers, vinyl alcohol polymers). [Pg.479]

Fig. 4. Carbocychc azo dyes. Disperse Yellow 3 [2832-40-8] (Cl 11855) (26) is used to dye polyester Reactive Orange 1 [6522-74-3] (Cl 17907) (27) is a cotton dye Direct Orange 26 [25188-23-2] (Cl 29150) (28) is a dye for paper Synacril Fast Red 2G [48222-26-0] (Cl 11085) (29) dyes acrylic fibers Acid... Fig. 4. Carbocychc azo dyes. Disperse Yellow 3 [2832-40-8] (Cl 11855) (26) is used to dye polyester Reactive Orange 1 [6522-74-3] (Cl 17907) (27) is a cotton dye Direct Orange 26 [25188-23-2] (Cl 29150) (28) is a dye for paper Synacril Fast Red 2G [48222-26-0] (Cl 11085) (29) dyes acrylic fibers Acid...
Much work on the preparation of nonaqueous polymer dispersions has involved the radical polymerization of acrylic monomers in the presence of copolymers having the A block the same as the acrylic polymer in the particle core 2). The preparation of polymer dispersions other than polystyrene in the presence of a PS-PDMS diblock copolymer is of interest because effective anchoring of the copolymer may be influenced by the degree of compatibility between the PS anchor block and the polymer molecules in the particle core. The present paper describes the interpretation of experimental studies performed with the aim of determining the mode of anchoring of PS blocks to polystyrene, poly(methyl methacrylate), and poly(vinyl acetate) (PVA) particles. [Pg.268]

Polyelectrolytes provide excellent stabilisation of colloidal dispersions when attached to particle surfaces as there is both a steric and electrostatic contribution, i.e. the particles are electrosterically stabilised. In addition the origin of the electrostatic interactions is displaced away from the particle surface and the origin of the van der Waals attraction, reinforcing the stability. Kaolinite stabilised by poly(acrylic acid) is a combination that would be typical of a paper-coating clay system. Acrylic acid or methacrylic acid is often copolymerised into the latex particles used in cement sytems giving particles which swell considerably in water. Figure 3.23 illustrates a viscosity curve for a copoly(styrene-... [Pg.96]

Acrylic acid and its salts are raw materials for an important range of esters, including methyl, ethyl, butyl, and 2-ethylhexyl acrylates. The acid and its esters are used in polyacrylic acid and salts (32%, including superabsorbent polymers, detergents, water treatment chemicals, and dispersants), surface coatings (18%), adhesives and sealants (15%), textiles and non-wovens (12%), plastic modifiers (5%), and paper coating (3%). [Pg.226]

The consumption of polymer dispersions in 1997 was 10xl06 t. The market is divided among styrene-butadien dispersions (35 %), dispersions containing vinyl acetate (32 %), styrene and styrene-acrylate dispersions (25 %) and others in minor quantities. They have many applications coatings and paints, adhesives, textile finishing, paper coatings and others. When used as coatings the dispersions should be suitable for food contact. Many substances can be used as monomers ... [Pg.46]

Polymers based on acrylic acid are highly hydrophilic and are utilized in different applications that include superadsorbent materials, flocculants and dispersants. Polyacrylates and their copolymers range from soft and flexible materials to hard plastics, applied in the production of coatings, paints, binders and adhesives. Their applications include the manufacture of cars e.g., coatings, upholsteries and adhesives) and the textile e.g., binders for fiberfill and nonwoven fabrics), paper and leather industries. Methyl acrylate is mainly utilized for copolymerization with acrylonitrile to improve the dyeability of fibres. [Pg.52]

Most vinyl acetate is converted into polyvinyl acetate (PVA) which is used in the manufacture of dispersions for paints and binders and as a raw material for paints. It is also copolymerized with vinyl chloride and ethylene and to a lesser extent with acrylic esters. A substantial proportion of vinyl acetate is converted into polyvinyl alcohol by saponification or transesterification of polyvinyl acetate. The main applications for polyvinyl alcohol are either as raw material for adhesives or for fibres. It is also employed in textile finishing and paper glueing, and as a dispersion agent (protective colloid). The world production capacity of PVA was 4.35 Mt/a in 2005, of which 2.1 Mt were converted into polyvinyl alcohol. [Pg.73]

Microspheres have been prepared by the dispersion polymerization of monomers other than vinyl monomers, such as styrene and (meth-)acrylates. Polyaniline (PANI) is one of the most frequently studied electrically conducting polymers. Since the paper by Armes and Aldissi [99] in 1989, there have been numerous reports on the preparation of PANI dispersions by oxidative... [Pg.307]

Membrane technology may become essential if zero-discharge mills become a requirement or legislation on water use becomes very restrictive. The type of membrane fractionation required varies according to the use that is to be made of the treated water. This issue is addressed in Chapter 35, which describes the apphcation of membrane processes in the pulp and paper industry for treatment of the effluent generated. Chapter 36 focuses on the apphcation of membrane bioreactors in wastewater treatment. Chapter 37 describes the apphcations of hollow fiber contactors in membrane-assisted solvent extraction for the recovery of metallic pollutants. The apphcations of membrane contactors in the treatment of gaseous waste streams are presented in Chapter 38. Chapter 39 deals with an important development in the strip dispersion technique for actinide recovery/metal separation. Chapter 40 focuses on electrically enhanced membrane separation and catalysis. Chapter 41 contains important case studies on the treatment of effluent in the leather industry. The case studies cover the work carried out at pilot plant level with membrane bioreactors and reverse osmosis. Development in nanofiltration and a case study on the recovery of impurity-free sodium thiocyanate in the acrylic industry are described in Chapter 42. [Pg.825]

Emulsion polymerization typically refers to the polymerization of a nonaqueous material in water. The polymerization of a water-soluble material in a nonaqueous continuum has been called inverse emulsion polymerization. The inverse emulsion polymerization technique is used to synthesize a wide range of polymers for a variety of applications such as wall paper adhesive, waste water fiocculant, additives for oil recovery fluids, and retention aids. The emulsion polymerization technique involves water-soluble polymer, usually in aqueous solution, emulsified in continuous oil phase using water in oil emulsifier. The inverse emulsion is polymerized using an oil- or water-soluble initiator. The product is a colloidal dispersion of sub-microscopic particles with particle size ranging from 0.05 to 0.3 pm. The typical water-soluble monomers used are sodium p-vinyl benzene sulfonate, sodium vinyl sulfonate, 2-sulfo ethyl acrylate, acrylic acid, and acrylamide. The preferred emulsifiers are Sorbitan monostearate and the oil phase is xylene. The proposed kinetics involve initiation in polymer swollen micelles, which results in the production of high molecular weight colloidal dispersion of water-swollen polymer particles in oil. [Pg.1065]

Aqueous dispersions of poly(vinyl acetate) and vinyl acetate-ethylene copolymers, homo- and copolymers of acrylic monomers, and styrene-butadiene copolymers are the most important types of polymer latexes today. Applications include paints, coatings, adhesives, paper manufacturing, leather manufacturing, textiles and other industries. In addition to emulsion polymerization, other aqueous free-radical polymerizations are applied on a large scale. In suspension polymerization a water-irnrniscible olefinic monomer is also polymerized. However, by contrast to emulsion polymerization a monomer-soluble initiator is employed, and usually no surfactant is added. Polymerization occurs in the monomer droplets, with kinetics similar to bulk polymerization. The particles obtained are much larger (>15 pm) than in emulsion polymerization, and they do not form stable latexes but precipitate during polymerization (Scheme 7.2). [Pg.234]

Self-adhesive labels can be applied to most materials wood, plastic, metal, glass, paper and board. As the adhesives are resin-based (plasticised thermoplastics), migration problems can occur when they are applied to certain plastics (PVC, LDPE, etc.). Adhesive systems for pressure sensitive labels include latex and acrylic bases and adhesives which may be applied as a hot melt, or via a solvent, emulsion or dispersion base. Water-based adhesives are currently increasing in use. [Pg.120]


See other pages where Paper dispersion acrylic is mentioned: [Pg.835]    [Pg.1012]    [Pg.5109]    [Pg.137]    [Pg.579]    [Pg.471]    [Pg.306]    [Pg.1]    [Pg.286]    [Pg.271]    [Pg.224]    [Pg.144]    [Pg.33]    [Pg.191]    [Pg.638]    [Pg.726]    [Pg.5]    [Pg.338]    [Pg.366]    [Pg.450]    [Pg.342]    [Pg.381]    [Pg.795]    [Pg.388]    [Pg.411]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Acrylic dispersions

Dispersible papers

© 2024 chempedia.info