Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel, fuel cell catalysts

Other Specialty Chemicals. In fuel-ceU technology, nickel oxide cathodes have been demonstrated for the conversion of synthesis gas and the generation of electricity (199) (see Fuel cells). Nickel salts have been proposed as additions to water-flood tertiary cmde-oil recovery systems (see Petroleum, ENHANCED oil recovery). The salt forms nickel sulfide, which is an oxidation catalyst for H2S, and provides corrosion protection for downweU equipment. Sulfur-containing nickel complexes have been used to limit the oxidative deterioration of solvent-refined mineral oils (200). [Pg.15]

In principle biomass is a useful fuel for fuel cells many of the technologies discussed above for using biomass as a fuel produce either methane or hydrogen directly and as highlighted below synthesis gas production from biomass for conversion to methanol is an attractive option. Cellulose-based material may be converted to a mixture of hydrogen (70% hydrogen content recovered), CO2 and methane by high-temperature treatment with a nickel catalyst. [Pg.180]

Low-cost material programs include the European Union s 54 million sixth framework research program on nanotechnologies and nanosciences, knowledge-based multifunctional materials, new production processes and devices. In partnership with the European Space Agency (ESA), the 5-year project seeks to find catalysts less expensive than platinum, which is used widely in fuel cells. As an alternative to platinum, nickel, cobalt and copper alloys are a possible solution. [Pg.35]

A significant cost advantage of alkaline fuel cells is that both anode and cathode reactions can be effectively catalyzed with nonprecious, relatively inexpensive metals. To date, most low cost catalyst development work has been directed towards Raney nickel powders for anodes and silver-based powders for cathodes. The essential characteristics of the catalyst structure are high electronic conductivity and stability (mechanical, chemical, and electrochemical). [Pg.98]

Sulfur poisons catalytic sites in the fuel cell also. The effect is aggravated when there are nickel or iron-containing components including catalysts that are sensitive to sulfur and noble metal catalysts, such as found in low temperature cell electrodes. Sulfur tolerances are described in the specific fuel cell sections of this handbook." In summary, the sulfur tolerances of the cells of interest, by percent volume in the cleaned and altered fuel reformate gas to the fuel cells from published data, are ... [Pg.206]

Mkaline Fuel Cell The electrolyte for NASA s space shnttle orbiter fuel cell is 35 percent potassinm hydroxide. The cell operates between 353 and 363 K (176 and I94°F) at 0.4 MPa (59 psia) on hydrogen and oxygen. The electrodes contain platinnm-palladinm and platinum-gold alloy powder catalysts bonded with polytetraflnoro-ethylene (PTFE) latex and snpported on gold-plated nickel screens for cnrrent collection and gas distribution. A variety of materials, inclnding asbestos and potassinm titanate, are used to form a micro-porous separator that retains the electrolyte between the electrodes. The cell structural materials, bipolar plates, and external housing are nsnally nickel-plated to resist corrosion. The complete orbiter fuel cell power plant is shown in Fig. 24-48. [Pg.47]

The key to the development of C02-resistant protonconducting oxides was the maximization of the en-tropic stabilization of protonic defects. If this approach also led to stable hydroxides with sufficiently high conductivity, AFCs using such electrolytes may operate even with air as the cathode gas. This would be tremendously advantageous, because fuel cells with nonacidic electrolytes may operate with non-noble-metal catalysts such as nickel for the anode and silver for the cathode. [Pg.435]

A solid oxide fuel cell (SOFC) consists of two electrodes anode and cathode, with a ceramic electrolyte between that transfers oxygen ions. A SOFC typically operates at a temperature between 700 and 1000 °C. at which temperature the ceramic electrolyte begins to exhibit sufficient ionic conductivity. This high operating temperature also accelerates electrochemical reactions therefore, a SOFC does not require precious metal catalysts to promote the reactions. More abundant materials such as nickel have sufficient catalytic activity to be used as SOFC electrodes. In addition, the SOFC is more fuel-flexible than other types of fuel cells, and reforming of hydrocarbon fuels can be performed inside the cell. This allows use of conventional hydrocarbon fuels in a SOFC without an external reformer. [Pg.521]

Platinum-based catalysts are widely used in low-temperature fuel cells, so that up to 40% of the elementary fuel cell cost may come from platinum, making fuel cells expensive. The most electroreactive fuel is, of course, hydrogen, as in an acidic medium. Nickel-based compounds were used as catalysts in order to replace platinum for the electrochemical oxidation of hydrogen [66, 67]. Raney Ni catalysts appeared among the most active non-noble metals for the anode reaction in gas diffusion electrodes. However, the catalytic activity and stability of Raney Ni alone as a base metal for this reaction are limited. Indeed, Kiros and Schwartz [67] carried out durability tests with Ni and Pt-Pd gas diffusion electrodes in 6 M KOH medium and showed increased stability for the Pt-Pd-based catalysts compared with Raney Ni at a constant load of 100 mA cm and at temperatures close to 60 °C. Moreover, higher activity and stability could be achieved by doping Ni-Al alloys with a few percent of transition metals, such as Ti, Cr, Fe and Mo [68-70]. [Pg.33]

In addition to the activity, other important requirements for the catalyst are the capability to start the reaction rapidly without the necessity for previous reduction with hydrogen and to perform effectively with intermittent operation these are essential properties for the catalyst in reformers, especially for portable and small-scale stationary fuel cell applications. In this respect, Dias and Assaf [61] focused on the potential of Pd, Pt and Ir to promote fast and intermittent ignition of methane ATR in Ni/y-Al203. They concluded that the three metals are very good promoters of the reduction of the nickel catalyst with methane, but the lower cost of palladium makes this metal more suitable than Pt and Ir for small fuel cells. [Pg.296]

Numerous studies have been published on catalyst material directly related to rich catalytic combustion for GTapplications [73]. However, most data are available on the catalytic partial oxidation of methane and light paraffins, which has been widely investigated as a novel route to H2 production for chemical and, mainly, energy-related applications (e.g. fuel cells). Two main types of catalysts have been studied and are reviewed below supported nickel, cobalt and iron catalysts and supported noble metal catalysts. [Pg.382]

Nickel oxide is used in the ceramic industry for making frit, ferrites, and coloring porcelain. The oxide in sinter form is used in the production of nickel-steel alloys. It supplies oxygen to the melt for removal of carbon as carbon dioxide. Some other important uses of nickel oxide include preparation of many nickel salts, specialty chemicals, and nickel catalysts. It also is used as an electrode in fuel cells. [Pg.619]

Which is the best catalyst for accelerating the reaction depends on the nature of the working materials. For the reaction of hydrogen or oxygen in potassium hydroxide solution, nickel or silver is suitable for carbonaceous fuels as well as for the reaction of oxygen in acid electrolytes platinum metals were up to the middle 60s, the only known catalysts. Precious metals are ruled out by price for wide application in fuel cells, and the search for cheaper catalysts has been actively pursued in many research laboratories. Many classes of inorganic substances (carbides, nitrides, oxides, sulfides, phosphides, etc.) have been investigated and, in particular, several chelates. [Pg.138]

The impregnation of porous nickel discs with CoPc was difficult because of the limited solubility of the chelate in the usual solvents. CoPc cathodes with carbon as substrate were therefore prepared for use in H2/O2 fuel cells. A mixture of 72 mg CoPc and 48 mg acetylene black, with PTFE as binder, was pressed into a nickel mesh of area 5 cm2. Electrodes of this type were tested in an H2/O2 fuel cell with 35% KOH electrolyte in an asbestos matrix at 80° C. Figure 5 compares the current/voltage characteristics of CoPc cathodes (14 mg/cm2) with those of other catalysts, including platinum (9 mg/cm2), silver (40 mg/cm2), and pure acetylene black (20 mg/cm2). An hydrogen electrode (9 mg Pt/cm2) was used as the anode in all tests. To facilitate comparison of the activity of different cathodes, the pure ohmic internal resistance of the cells (of the order of 0.02 ohm) was eliminated. [Pg.147]

Also for cathodic oxygen reduction in low-temperature fuel cells, platinum is indispensible as a catalyst whereas the cathodic electrocatalysts in MCFCs and SOFCs are lithiated nickel oxide and lanthanum-manganese per-ovskite, respectively. Appleby and Foulkes in the Fuel Cell Handbook (101) reviewed the fundamental work as well as the technologically important publications covering electrocatalysis in fuel cells till 1989. [Pg.123]

Fuel cells - [FUEL CELLS] (Vol 11) - [ELECTROCHEMICALPROCESSING - INTRODUCTION] (Vol9) -ceramics m [CERAMICS AS ELECTRICAL MATERIALS] (Vol 5) -as fuel resources [FUEL RESOURCES] (Vol 12) -hydrazine in [HYDRAZINE AND ITS DERIVATIVES] (Vol 13) -lanthanides for [LANTHANIDES] (Vol 14) -lithium carbonate m [LITHIUM AND LITHIUM COMPOUNDS] (Vol 15) -nickel and nickel alloys m [NICKEL AND NICKEL ALLOYS] (Vol 17) -phthalocyamnes m [PHTHALOCYANINE COMPOUNDS] (Vol 18) -platinum-group metal catalysts for [PLATINUM-GROUP METALS] (Vol 19) -for power generation [POWER GENERATION] (Vol 20) -use of hydrides m [HYDRIDES] (Vol 13) -use of nickel compounds [NICKEL COMPOUNDS] (Vol 17)... [Pg.425]

The hydrogen-oxygen cell used in the space shuttle is called an alkali fuel cell, because it has an alkaline electrolyte. Both electrodes are nickel, but in some versions a platinum catalyst is used. [Pg.720]

Tonkovich et al. [123] claimed a 90% size reduction due to the introduction of micro channel systems into their device, which made use of the hydrogen off-gas of the fuel cell anode burnt in monoliths at palladium catalyst to deliver the energy for the fuel evaporation. A metallic nickel foam 0.63 cm high was etched and impregnated with palladium to act as a reactor for the anode effluent It was attached to a micro structured device consisting of liquid feed supply channels and outlet channels for the vapor, the latter flowing counter-flow to the anode effluent... [Pg.370]


See other pages where Nickel, fuel cell catalysts is mentioned: [Pg.180]    [Pg.160]    [Pg.102]    [Pg.180]    [Pg.160]    [Pg.235]    [Pg.439]    [Pg.594]    [Pg.173]    [Pg.167]    [Pg.442]    [Pg.312]    [Pg.96]    [Pg.101]    [Pg.309]    [Pg.353]    [Pg.154]    [Pg.42]    [Pg.49]    [Pg.69]    [Pg.54]    [Pg.114]    [Pg.208]    [Pg.209]    [Pg.534]    [Pg.331]    [Pg.39]    [Pg.211]    [Pg.214]    [Pg.123]    [Pg.145]    [Pg.689]   
See also in sourсe #XX -- [ Pg.89 , Pg.96 ]




SEARCH



Alkaline fuel cells nickel catalysts

Catalyst fuel cell

Catalysts cells

Fuel catalysts

Fuel cells cell catalysts

© 2024 chempedia.info