Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel battery systems

There are many reviews on mathematical models for hthium ion batteries. Botte et al. presented an extensive review on mathematical modeling of rechargeable lithium batteries. A review of mathematical models of lithium and nickel battery systems is discussed in hterature." " Experimental developments in the field can be found in a recent review article that describes new solutions, new measurement procedures and new materials for Li-ion batteries. " Apart from the enormous body of work on modehng of Li-ion batteries, efforts have also been made in making these continuum models more computationally efficient to simulate." Computationally efficient models can not only be used to predict battery behavior but can also be used in situations where real-time parameter estimation is needed, for example, situations where super accurate determination of State of Health (SOH) of a battery is critical, adding a new dimension to the capabilities of continuum models. [Pg.317]

Nickel battery systems compete directly with the lead acid battery in many commercial energy storage applications and with Li-Ion in portable electronic applications. [Pg.425]

Table 43.1 Nickel battery systems cost and performancesummary... Table 43.1 Nickel battery systems cost and performancesummary...
In nickel battery systems, y-NiOOH(s) is in equilibrium with a-Ni(OH)2(s) but there is a lack of thermochemical data on the latter solid (Gamsjager et al., 2005). More importantly, the couple between these two solids is actually a solid solution between nickel oxide and hydroxide solids in the divalent, trivalent andtetravalent states. Thermochemical data have been derived for the following reaction (Gamsjager et al., 2005) ... [Pg.649]

Fig. 1. Schematic representation of a battery system also known as an electrochemical transducer where the anode, also known as electron state 1, may be comprised of lithium, magnesium, zinc, cadmium, lead, or hydrogen, and the cathode, or electron state 11, depending on the composition of the anode, may be lead dioxide, manganese dioxide, nickel oxide, iron disulfide, oxygen, silver oxide, or iodine. Fig. 1. Schematic representation of a battery system also known as an electrochemical transducer where the anode, also known as electron state 1, may be comprised of lithium, magnesium, zinc, cadmium, lead, or hydrogen, and the cathode, or electron state 11, depending on the composition of the anode, may be lead dioxide, manganese dioxide, nickel oxide, iron disulfide, oxygen, silver oxide, or iodine.
The aimual production value of small, sealed nickel—cadmium cells is over 1.2 biUion. However, environmental considerations relating to cadmium are necessitating changes in the fabrication techniques, as well as recovery of failed cells. Battery system designers are switching to nickel —metal hydride (MH) cells for some appHcations, typically in "AA"-si2e cells, to increase capacity in the same volume and avoid the use of cadmium. [Pg.543]

There are many methods of fabricating the electrodes for these cell systems. The eadiest commercially successhil developments used nickel hydroxide [12054-48-7] Ni(OH)2, positive electrodes. These electrodes are commonly called nickel electrodes, disregarding the actual chemical composition. Alkaline cells using the copper oxide—2inc couple preceeded nickel batteries but the CuO system never functioned well as a secondary battery. It was, however, commercially available for many years as a primary battery (see BatterieS-PRIMARY cells). [Pg.543]

Because the nickel—iron cell system has a low cell voltage and high cost compared to those of the lead—acid battery, lead—acid became the dorninant automotive and industrial battery system except for heavy-duty appHcations. Renewed interest in the nickel—iron and nickel—cadmium systems, for electric vehicles started in the mid-1980s using other cell geometries. [Pg.543]

A battery system closely related to Na—S is the Na—metal chloride cell (70). The cell design is similar to Na—S however, ia additioa to the P-alumiaa electrolyte, the cell also employs a sodium chloroalumiaate [7784-16-9J, NaAlCl, molten salt electrolyte. The positive electrode active material coasists of a transitioa metal chloride such as iroa(Il) chloride [7758-94-3] EeQ.25 or nickel chloride [7791-20-0J, NiQ.25 (71,72) in Heu of molten sulfur. This technology is in a younger state of development than the Na—S. [Pg.586]

Zinc/carbon and alkaline/manganese cells are primary battery systems lead, nickel/cadmium, and nickel/metal hydride accumulators are secondary batteries with aqueous electrolyte solutions. Their per-... [Pg.19]

The variety of practical batteries has increased during the last 20 years. Applications for traditional and new practical battery systems are increasing, and the market for lithium-ion batteries and nickel-metal hydride batteries has grown remarkably. This chapter deals with consumer-type batteries, which have developed relatively recently. [Pg.20]

Compared with nickel-cadmium and nickel-metal hydride systems RAM cells exhibit very low self-discharge, making them ideal for intermittent or periodic use without the need to recharge before using, even in hot climates. Figure 6 shows a comparison of the temperature characteristics, for various battery systems in the form of Arrhenius diagrams. [Pg.76]

Although one of the most common storage batteries is called the nickel/cadmium system ( NiCad ), correctly written (-)Cd/KOH/NiO(OH)(+), cadmium is not usually applied as a metal to form a battery anode. The same can be said with regard to the silver/cadmium [(-) Cd / KOH / AgO (+)] and the MerCad battery [(-)Cd/KOH/HgO(+)]. The metallic negative in these cases may be formed starting with cadmium hydroxide, incorporated in the pore system of a sintered nickel plate or pressed upon a nickel-plated steel current collector (pocket plates), which is subsequently converted to cadmium metal by electrochemical reduction inside the cell (type AB2C2). This operation is done by the customers when they start the application of these (storage)... [Pg.196]

Probably the best-known battery system using an iron anode is called the nickel/iron battery. It should be written (-) Fe / KOH / NiO(OH) (+), having its merits as a heavy-duty accumulator [7], By... [Pg.197]

In acidic electrolytes only lead, because it forms passive layers on the active surfaces, has proven sufficiently chemically stable to produce durable storage batteries. In contrast, in alkaline medium there are several substances basically suitable as electrode materials nickel hydroxide, silver oxide, and manganese dioxide as positive active materials may be combined with zinc, cadmium, iron, or metal hydrides. In each case potassium hydroxide is the electrolyte, at a concentration — depending on battery systems and application — in the range of 1.15 - 1,45 gem"3. Several elec-... [Pg.281]

The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, as it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems, while in contrast to Pb and Cd, magnesium is inexpensive, environmentally friendly, and safe to handle. However, the development of Mg-ion batteries has so far been limited by the kinetics of Mg " " diffusion and the lack of suitable electrolytes. Actually, in spite of an expected general similarity between the processes of Li and Mg ion insertion into inorganic host materials, most of the compounds that exhibit fast and reversible Li ion insertion perform very poorly in Mg " ions. Hence, there... [Pg.329]

Nickel-cadmium rechargeable batteries are being researched. Alternatives such as cadmium-free nickel and nickel hydride systems are also being researched, but nickel-cadmium batteries are unlikely to be totally replaced. Nickel-cadmium batteries can be reprocessed to reclaim the nickel. However, currently, approximately 80% of all nickel-cadmium batteries are permanently sealed in appliances. Changing regulations may result in easier access to these nickel-cadmium batteries for recycling. [Pg.1228]

New battery systems could give better performance but they have not been forthcoming. Performance is limited by the lead-acid battery packs which are generally the most affordable option. More unfamiliar batteries like nickel metal hybride (NiMH) packs have also appeared. [Pg.254]

Table 11. Separators and Their Manufacturers for Nickel and Zinc Based Battery Systems... Table 11. Separators and Their Manufacturers for Nickel and Zinc Based Battery Systems...
Nickel—hydrogen batteries offer long cycle life that exceeds that of other maintenance-free secondary battery systems and accordingly makes it suitable for many space applications. Three types of separator materials have been used for aerospace Ni—H2 cells— asbestos (fuel-cell-grade asbestos paper), Zircar (untreated knit ZYK-15 Zircar cloth),and nylon. [Pg.213]

Although the nickel-containing systems have been extensively studied also by electrochemical methods [1] due to their practical importance, for example, in electrochemical power sources (Ni—Fe, Ni—Cd, Fi—NiF2 batteries), in corrosion-resistant alloys (tableware, coins, industrial instruments) as well as due to their interesting (magnetic, spectral, catalytic) properties most of the standard potentials of electrode... [Pg.499]

The iron-nickel oxide alkaline battery system has many features in common with the nickel-cadmium system discussed above. It was first developed by Edison in the USA at the turn of the century and was patented in the same year as Jungner s first nickel-cadmium US patent, 1901. Iron can be regarded as a favourable active battery material because of its low cost, high theoretical specific capacity (twice that of cadmium) and non-toxic, pollution-free characteristics. However, because its reduction potential is below that of hydrogen, and since hydrogen overvoltage is low on iron, charge retention is poor and efficiency is low. [Pg.187]

Manufacture of iron-nickel oxide batteries commenced in 1908, but the system did not have the commercial success of nickel-cadmium. Until comparatively recently, there was only a very limited production of stationary batteries in the USA, Germany and Russia. Developments of improved iron electrodes have altered the situation, and the iron-nickel oxide system is now being actively considered for EV propulsion and other applications. [Pg.187]

Batteries based on the iron-nickel oxide system are now being developed for electric vehicle applications. These use fibre-plaque electrodes, as described above for the nickel-cadmium system, and incorporate electrolyte circulation systems to permit removal of gases evolved during charge... [Pg.189]


See other pages where Nickel battery systems is mentioned: [Pg.427]    [Pg.872]    [Pg.427]    [Pg.872]    [Pg.515]    [Pg.525]    [Pg.556]    [Pg.557]    [Pg.559]    [Pg.564]    [Pg.17]    [Pg.17]    [Pg.286]    [Pg.565]    [Pg.567]    [Pg.613]    [Pg.350]    [Pg.1306]    [Pg.143]    [Pg.236]    [Pg.215]    [Pg.216]    [Pg.246]    [Pg.144]    [Pg.4]    [Pg.12]    [Pg.163]    [Pg.190]    [Pg.198]   
See also in sourсe #XX -- [ Pg.649 ]




SEARCH



Nickel batteries

Nickel system

Systemic nickel

© 2024 chempedia.info