Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pore system

Supports such as silica, alumina and carbon usually contain pores that offer a high internal surface area. The pore system of a support is usually rather irregular in shape and contains macropores, due to the spaces between individual crystallites, with diameters of the order of 100 nm, and micropores with characteristic dimensions of 5-10 nm. A good support offers [Pg.182]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]


The pores between the rock components, e.g. the sand grains in a sandstone reservoir, will initially be filled with the pore water. The migrating hydrocarbons will displace the water and thus gradually fill the reservoir. For a reservoir to be effective, the pores need to be in communication to allow migration, and also need to allow flow towards the borehole once a well is drilled into the structure. The pore space is referred to as porosity in oil field terms. Permeability measures the ability of a rock to allow fluid flow through its pore system. A reservoir rock which has some porosity but too low a permeability to allow fluid flow is termed tight . [Pg.13]

Very clean sands are rare and normally variable amounts of c/ay will be contained in the reservoir pore system, the clays being the weathering products of rock constituents such as feldspars. The quantity of clay and its distribution within the reservoir exerts a major control on permeability and porosity. Figure 5.2 shows several types of clay distribution. [Pg.77]

The dissolution of carbonates can create spectacular features like those found in many caves. The process is termed karstification. Some reservoirs are related to Karst. Examples are the Bohai Bay Field in China or the Nang Nuan oil field in the Gulf of Thailand. These reservoirs are characterised by high initial production from the large open pore system. However, since the Karst features are connected downdip to the waterleg this is usually followed by rapid and substantial water breakthrough. ... [Pg.88]

To gain an understanding of the composition of the reservoir rock, inter-reservoir seals and the reservoir pore system it is desirable to obtain an undisturbed and continuous reservoir core sample. Cores are also used to establish physical rock properties by direct measurements in a laboratory. They allow description of the depositional environment, sedimentary features and the diagenetic history of the sequence. [Pg.126]

Nearly all reservoirs are water bearing prior to hydrocarbon charge. As hydrocarbons migrate into a trap they displace the water from the reservoir, but not completely. Water remains trapped in small pore throats and pore spaces. In 1942 Arch/ e developed an equation describing the relationship between the electrical conductivity of reservoir rock and the properties of its pore system and pore fluids. [Pg.147]

The pore system is described by the volume fraction of pore space (the fractional porosity) and the shape of the pore space which is represented by m , known as the cementation exponent. The cementation exponent describes the complexity of the pore system i.e. how difficult it is for an electric current to find a path through the reservoir. [Pg.148]

Secondly it can be observed that as water is displaced by (non conductive) oil in the pore system the conductivity (C() of an oil bearing reservoir sample decreases. As the water saturation (SJ reduces so does the electrical conductivity of the sample, such that ... [Pg.148]

Permeable intervals can be identified from a number of logging tool measurements, the most basic of which is the caliper tool. The caliper tool is used to measure the borehole diameter which, in a gauge hole, is a function of the bit size and the mudcake thickness. Mudcake will only build up across permeable sections of the borehole where mud filtrate has invaded the formation and mud solids (which are too big to enter the formation pore system) plate out on the borehole wall. Therefore the presence of mudcake implies permeability. [Pg.151]

More detailed information about the pore system can be obtained from scanning curves, illustrated in Fig. XVII-28c. Thus if adsorption is carried only up to point a and then desorption is started, the lower curve ab will be traced if at absorption is resumed, the upper curve ab is followed, and so on. Any complete model should account in detail for such scanning curves and, conversely, through their complete mapping much more information can be obtained about the nature of the pores. Rao [214] and Emmett [215] have summarized a great deal of such behavior. [Pg.668]

For practical reasons, the application of the adsorption method to the study of surface area and porosity has to be limited to bodies which are either very finely divided or possess an extensive pore system. It is helpful to consider the case of finely divided bodies first. [Pg.21]

The pore systems of solids are of many different kinds. The individual pores may vary greatly both in size and in shape within a given solid, and between one solid and another. A feature of especial interest for many purposes is the width w of the pores, e.g. the diameter of a cylindrical pore, or the distance between the sides of a slit-shaped pore. A convenient classification of pores according to their average width originally proposed by Dubinin and now officially adopted by the International Union of Pure and Applied Chemistry is summarized in Table 1.4. [Pg.25]

The importance of the role played by the adsorbed film can be appreciated by picturing the progressive emptying of a pore system initially full up at relative pressure pjp", as the relative pressure is lowered in steps lo P2/P° pores be divided into groups 1,2, etc. having re-... [Pg.133]

As in the other methods, the modelless procedure visualizes the progressive emptying of the pore system, initially full up, by the stepwise reduction in relative pressure. At each step the value of additional core wall area which becomes exposed is calculated by means of the equation (see p. 170) ... [Pg.148]

Thus the hysteresis loop should close at a relative pressure determined by the tensile strength of the liquid adsorptive, no matter whether the pore system extends to finer pores than those characterized by or not. [Pg.157]

The pores in question can represent only a small fraction of the pore system since the amount of enhanced adsorption is invariably small. Plausible models are solids composed of packed spheres, or of plate-like particles. In the former model, pendulate rings of liquid remain around points of contact of the spheres after evaporation of the majority of the condensate if the spheres are small enough this liquid will lie wholly within the range of the surface forces of the solid. In wedge-shaped pores, which are associated with plate-like particles, the residual liquid held in the apex of the wedge will also be under the influence of surface forces. [Pg.164]

At the point where capillary condensation commences in the finest mesopores, the walls of the whole mesopore system are already coated with an adsorbed film of area A, say. The quantity A comprises the area of the core walls and is less than the specific surface A (unless the pores happen to be parallel-sided slits). When capillary condensation takes place within a pore, the film-gas interface in that pore is destroyed, and when the pore system is completely filled with capillary condensate (e.g. at F in Fig. 3.1) the whole of the film-gas interface will have disappeared. It should therefore be possible to determine the area by suitable treatment of the adsorption data for the region of the isotherm where capillary condensation is occurring. [Pg.169]

In a pore system composed of isolated pores of ink-bottle shape, the intrusion curve leads to the size distribution of the necks and the extrusion curve to the size distribution of the bodies of the pores. In the majority of solids, however, the pores are present as a network, and the interpretation of the mercury porosimetry results is complicated by pore blocking effects. [Pg.190]

Despite these various limitations, mercury pwrosimetry constitutes an indispensable tool for the quantitative study of pore structure, but it needs to be supplemented by other techniques, if a reliable picture of the pore system is to be built up. [Pg.190]

The limits of pore size corresponding to each process will, of course, depend both on the pore geometry and the size of the adsorbate molecule. For slit-shaped pores the primary process will be expected to be limited to widths below la, and the secondary to widths between 2a and 5ff. For more complicated shapes such as interstices between small spheres, the equivalent diameter will be somewhat higher, because of the more effective overlap of adsorption fields from neighbouring parts of the pore walls. The tertiary process—the reversible capillary condensation—will not be able to occur at all in slits if the walls are exactly parallel in other pores, this condensation will take place in the region between 5hysteresis loop and in a pore system containing a variety of pore shapes, reversible capillary condensation occurs in such pores as have a suitable shape alongside the irreversible condensation in the main body of pores. [Pg.244]

The computation of mesopore size distribution is valid only if the isotherm is of Type IV. In view of the uncertainties inherent in the application of the Kelvin equation and the complexity of most pore systems, little is to be gained by recourse to an elaborate method of computation, and for most practical purposes the Roberts method (or an analogous procedure) is adequate—particularly in comparative studies. The decision as to which branch of the hysteresis loop to use in the calculation remains largely arbitrary. If the desorption branch is adopted (as appears to be favoured by most workers), it needs to be recognized that neither a Type B nor a Type E hysteresis loop is likely to yield a reliable estimate of pore size distribution, even for comparative purposes. [Pg.286]

There are two types of stmctures one provides an internal pore system comprising interconnected cage-like voids the second provides a system of uniform channels which, in some instances, are one-dimensional and in others intersect with similar channels to produce two- or three-dimensional channel systems. The preferred type has two- or three-dimensional channel systems to provide rapid intracrystalline diffusion in adsorption and catalytic apphcations. [Pg.444]

Although one of the most common storage batteries is called the nickel/cadmium system ( NiCad ), correctly written (-)Cd/KOH/NiO(OH)(+), cadmium is not usually applied as a metal to form a battery anode. The same can be said with regard to the silver/cadmium [(-) Cd / KOH / AgO (+)] and the MerCad battery [(-)Cd/KOH/HgO(+)]. The metallic negative in these cases may be formed starting with cadmium hydroxide, incorporated in the pore system of a sintered nickel plate or pressed upon a nickel-plated steel current collector (pocket plates), which is subsequently converted to cadmium metal by electrochemical reduction inside the cell (type AB2C2). This operation is done by the customers when they start the application of these (storage)... [Pg.196]

Zeolites have the following characteristics (ref. 1) they are crystalline aluminosilicates (tetrahedral connection) with accessibility ranging from. 3-.8 ran. All atoms are exposed to the pore system which can consist of parallel channels (1-D) or of a threedimensional system (3-D). Some common zeolites with their accessibility and minimum Si/Al ratios are given in Table 1. [Pg.203]


See other pages where Pore system is mentioned: [Pg.86]    [Pg.88]    [Pg.668]    [Pg.1897]    [Pg.2790]    [Pg.4]    [Pg.64]    [Pg.70]    [Pg.71]    [Pg.21]    [Pg.24]    [Pg.24]    [Pg.118]    [Pg.133]    [Pg.136]    [Pg.138]    [Pg.142]    [Pg.144]    [Pg.152]    [Pg.154]    [Pg.156]    [Pg.165]    [Pg.169]    [Pg.187]    [Pg.10]    [Pg.253]    [Pg.290]    [Pg.61]   


SEARCH



© 2024 chempedia.info