Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphtha properties

Table 4.1 Typical Naphtha Properties and Japanese Open Spec. Table 4.1 Typical Naphtha Properties and Japanese Open Spec.
The degree of purity of naphtha is an important aspect of naphtha properties, and strict segregation of all distribution equipment is maintained to ensure strict and uniform specification for the product handled. Naphtha is refined to a low level of odor to meet the specifications for use. [Pg.100]

They are classified apart in this text because their use differs from that of petroleum solvents they are used as raw materials for petrochemicals, particularly as feeds to steam crackers. Naphthas are thus industrial intermediates and not consumer products. Consequently, naphthas are not subject to governmental specifications, but only to commercial specifications that are re-negotiated for each contract. Nevertheless, naphthas are in a relatively homogeneous class and represent a large enough tonnage so that the best known properties to be highlighted here. [Pg.275]

Properties. Shell s two-step SMDS technology allows for process dexibiUty and varied product slates. The Hquid product obtained consists of naphtha, kerosene, and gas oil in ratios from 15 25 60 to 25 50 25, depending on process conditions. Of particular note are the high quaHty gas oil and kerosene. Table 2 gives SMDS product quaHties for these fractions. [Pg.82]

Properties. The properties of naphtha, gas od, and H-od products from an H-coal operation are given in Table 7. These analyses are for Hquids produced from the syncmde operating mode. Whereas these Hquids are very low in sulfur compared with typical petroleum fractions, they are high in oxygen and nitrogen levels. No residual od products (bp > 540° C) are formed. [Pg.89]

Properties. The properties of the Hquid fuel oil produced by the SRC-II process are iafluenced by the particular processiag coafiguratioa. However, ia geaeral, it is an oil boiling between 177 and 487°C, having a specific gravity of 0.99—1.00, and a viscosity at 38°C of 40 SUs (123). Pipeline gas, propane and butane (LPG), and naphtha are also recovered from an SRC-II complex. [Pg.90]

The principal class of reactions in the FCC process converts high boiling, low octane normal paraffins to lower boiling, higher octane olefins, naphthenes (cycloparaffins), and aromatics. FCC naphtha is almost always fractionated into two or three streams. Typical properties are shown in Table 5. Properties of specific streams depend on the catalyst, design and operating conditions of the unit, and the cmde properties. [Pg.184]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]

Interest in naphtha (nafta) began with the discovery that petroleum could be used as an illuminant and as a supplement to bituminous incendiaries, which were becoming increasingly common in warfare. Greek fire was a naphtha—bitumen (or naphtha—asphalt) mix the naphtha provided the flame and the bitumen (or asphalt) provided the adhesive properties that prolonged the incendiary effect. [Pg.200]

Liquid fuels for ground-based gas turbines are best defined today by ASTM Specification D2880. Table 4 Hsts the detailed requirements for five grades which cover the volatility range from naphtha to residual fuel. The grades differ primarily in basic properties related to volatility eg, distillation, flash point, and density of No. 1 GT and No. 2 GT fuels correspond to similar properties of kerosene and diesel fuel respectively. These properties are not limited for No. 0 GT fuel, which allows naphthas and wide-cut distillates. For heavier fuels. No. 3 GT and No. 4 GT, the properties that must be limited are viscosity and trace metals. [Pg.409]

Property 0-GT" Naphtha 1-GT" Light distillate 2-GT" Medium distillate 3-GT Heavy distillate 4-GT Heavy residual... [Pg.410]

Table 2. Properties of Straight Run Naphthas from Various Crude Oils... Table 2. Properties of Straight Run Naphthas from Various Crude Oils...
When simple Hquids like naphtha are cracked, it may be possible to determine the feed components by gas chromatography combined with mass spectrometry (gc/ms) (30). However, when gas oil is cracked, complete analysis of the feed may not be possible. Therefore, some simple definitions are used to characterize the feed. When available, paraffins, olefins, naphthenes, and aromatics (PONA) content serves as a key property. When PONA is not available, the Bureau of Mines Correlation Index (BMCI) is used. Other properties like specific gravity, ASTM distillation, viscosity, refractive index. Conradson Carbon, and Bromine Number are also used to characterize the feed. In recent years even nuclear magnetic resonance spectroscopy has been... [Pg.434]

Property C3H3 n Light naphtha Light AGO HVGO "... [Pg.436]

The majority of today s turbines arc fueled wth natural gas or No. 2 distillate oil. Recently there has been increased interest in the burning of nonstandard liquid fuel oils or applications where fuel treatment is desirable. Gas turbines have been engineered to accommodate a wide spectrum of fuels. Over the years, units have been equipped to burn liquid fuels, including naphtha various grades of distillate, crude oils, and residual oils and blended, coal-derived liquids. Many of these nonstandard fuels require special provisions. For example, light fuels like naphtha require modifications Co the fuel handling system to address high volatility and poor lubricity properties. [Pg.1178]

Secondary raw materials, or intermediates, are obtained from natural gas and crude oils through different processing schemes. The intermediates may be light hydrocarbon compounds such as methane and ethane, or heavier hydrocarbon mixtures such as naphtha or gas oil. Both naphtha and gas oil are crude oil fractions with different boiling ranges. The properties of these intermediates are discussed in Chapter 2. [Pg.1]

Feeds to hydrotreatment units vary widely they could he any petroleum fraction, from naphtha to crude residues. The process is relatively simple choosing the desulfurization process depends largely on the feed type, the level of impurities present, and the extent of treatment needed to suit the market requirement. Table 3-12 shows the feed and product properties from a hydro treatment unit. ... [Pg.83]

Cresylic acid is a commercial mixture of phenolic compounds including phenol, cresols, and xylenols. This mixture varies widely according to its source. Properties of phenol, cresols, and xylenols are shown in Table 4-5 Cresylic acid constitutes part of the oxygen compounds found in crudes that are concentrated in the naphtha fraction obtained principally from naphthenic and asphaltic-based crudes. Phenolic compounds, which are weak acids, are extracted with relatively strong aqueous caustic solutions. [Pg.131]

A modern refinery is a complicated collection of conversion processes, each tailored to the properties of the feed it has to convert. The scheme shown in Fig. 9.1 summarizes the most important operations some reasons for these processes are given in Tab. 9.2, along with relevant catalysts. First the crude oil is distilled to separate it into fractions, varying from gases, liquids (naphtha, kerosene and gas oil), to the heavy residue (the so-called bottom of the barrel ) that remains after vacuum distillation. [Pg.349]

A tank containing 1500 m3 of naphtha is to be blended with two other hydrocarbon streams to meet the specifications for gasoline. The final product must have a minimum research octane number (RON) of 95, a maximum Reid Vapor Pressure (RVP) of 0.6 bar, a maximum benzene content of 2% vol and maximum total aromatics of 25% vol. The properties and costs of the three streams are given in the Table 3.5. [Pg.55]


See other pages where Naphtha properties is mentioned: [Pg.307]    [Pg.245]    [Pg.307]    [Pg.77]    [Pg.307]    [Pg.245]    [Pg.307]    [Pg.77]    [Pg.47]    [Pg.115]    [Pg.80]    [Pg.235]    [Pg.184]    [Pg.184]    [Pg.184]    [Pg.187]    [Pg.253]    [Pg.19]    [Pg.488]    [Pg.343]    [Pg.455]    [Pg.408]    [Pg.248]    [Pg.609]    [Pg.80]    [Pg.43]    [Pg.44]    [Pg.215]    [Pg.235]    [Pg.267]    [Pg.39]    [Pg.51]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Naphtha

© 2024 chempedia.info