Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers in polyesters

The production of para-xylene is of interest to the petrochemical industry because of its use as monomer in polyester production. In addition to Cg aromatic isomerization, there are a number of important routes to para-xylene including the alkylation of toluene with methanol and the disproportionation of toluene. The catalytic properties of the SAPO molecular sieves for toluene methylation reactions have been described(11). While both large and medium pore SAPO s were active for the alkylation reaction, the medium pore materials were distinguished by remarkably high selectivity for methylation reactions, with disproportionation of the toluene feed representing less than 2% of the total conversion. By comparison, large pore SAPO-5 had nearly 60% disproportionation selectivity and the zeolite reference LZ-105 had nearly 80% disproportionation selectivity. The very low disproportionation activity of the medium pore SAPO s, attributed to their mild acid character, resulted in reduced losses of toluene to benzene and increased xylene yields relative to LZ-105 and SAPO-5. [Pg.521]

Allylic resins Long pot life, low vapor pressure monomers, high cure temperature, low viscosity for monomers Excellent clarity, abrasion resistant,-color stability, resistant to solvents and acids Safety lenses, face shields, casting impregnation, as monomer in polyester... [Pg.120]

Glycerol is a by-product of the biodiesel production 1 ton biodiesel production produces 100 kg of glycerol. Glycerol is a 1.2.3-triol that is used in personal care and pharmaceutical products and as feed additive, but there are also a variety of derived chemicals such as propanediols (monomers in polyester and polyurethane materials), oUgoglycerols (cosmetics and biodegradable lubricants), epichlorohydrin (polymers), and glycerol carbonate (solvent). [Pg.375]

The discussion of polyamides parallels that of polyesters in many ways. To begin with, polyamides may be formed from an AB monomer, in this case amino acids ... [Pg.304]

Ttihaloacyl aromatics have been prepared by Friedel-Crafts acylation of aromatics with CX COCl (X = Cl, Br) in the presence of AlCl. They are used as monomers in the preparation of polycarbonates, polyesters, polyamides, polyketones, and polyurethanes (91). [Pg.557]

Naphthalenedicarboxylic Acid. This dicarboxyhc acid, a potential monomer in the production of polyester fibers and plastics with superior properties (105), and of thermotropic Hquid crystal polymers (106), is manufactured by the oxidation of 2,6-dialkylnaphthalenes (107,108). [Pg.503]

OC-Methylstyrene. This compound is not a styrenic monomer in the strict sense. The methyl substitution on the side chain, rather than the aromatic ring, moderates its reactivity in polymerization. It is used as a specialty monomer in ABS resins, coatings, polyester resins, and hot-melt adhesives. As a copolymer in ABS and polystyrene, it increases the heat-distortion resistance of the product. In coatings and resins, it moderates reaction rates and improves clarity. Physical properties of a-methylstyrene [98-83-9] are shown in Table 12. [Pg.490]

Many other acids, glycols and reactive monomers have been described in the literature but these remain of either minor or academic importance. In a number of cases this is simply because of the high cost of the chemical and a reduction in cost due to its widespread use in some other application could well lead to extensive use in polyester resins. [Pg.701]

This monomer has been used as the basis of a laminating resin and as a reactive diluent in polyester laminating resins, but at the present time its principal value is in moulding compositions. It is possible to heat the monomer under carefully controlled conditions to give a soluble and stable partial polymer in the form of a white powder. The powder may then be blended with fillers, peroxide catalysts and other ingredients in the same manner as the polyester alkyds to form a moulding powder. Similar materials may be obtained from diallyl isophthalate. [Pg.712]

The carhonylation reaction of toluene with carhon monoxide in the presence of HF/BF3 catalyst produces p-tolualdehyde. A high yield results (96% based on toluene and 98% based on CO). p-Tolualdehyde could be further oxidized to terephthalic acid, an important monomer for polyesters ... [Pg.294]

The compounds formed continue condensation as long as the species present have different endings. The polymer terminates by having one of the monomers in excess. This produces a polymer with similar endings. For example, a polyester formed with excess diol could be represented ... [Pg.313]

The polyester is prepd by dissolving equivalent amounts of the monomers in dioxane followed by maintaining the temp at 30° for 3 days. The soln is then filtered, poured into ice w and vacuum steam distd to obtain the product... [Pg.324]

For almost all applications unsaturated polyesters are dissolved in an unsaturated monomer capable of free-radical polymerization with the unsaturations in polyester chains. This polymerizable comonomer is generally styrene, but other compounds, such as methyl methacrylate, vinyl toluene, a-methylstyrene, and diallylphthalate, are also used in some applications. Upon heating and in... [Pg.58]

Certain commercially important crosslinking reactions are carried out with unsaturated polymers. For example, as will be described later in this chapter, polyesters can be made using bifunctional acids which contain a double bond. The resulting polymers have such double bonds at regular intervals along the backbone. These sites of unsaturation are then crosslinked by reaction with styrene monomer in a free-radical chain (addition) process to give a material consisting of polymer backbones and poly(styrene) copolymer crosslinks. [Pg.55]

As early as 1952, Flory [5, 6] pointed out that the polycondensation of AB -type monomers will result in soluble highly branched polymers and he calculated the molecular weight distribution (MWD) and its averages using a statistical derivation. Ill-defined branched polycondensates were reported even earlier [7,8]. In 1972, Baker et al. reported the polycondensation of polyhydrox-ymonocarboxylic acids, (OH)nR-COOH, where n is an integer from two to six [ 9]. In 1982, Kricheldorf et al. [ 10] pubhshed the cocondensation of AB and AB2 monomers to form branched polyesters. However, only after Kim and Webster published the synthesis of pure hyperbranched polyarylenes from an AB2 monomer in 1988 [11-13], this class of polymers became a topic of intensive research by many groups. A multitude of hyperbranched polymers synthesized via polycondensation of AB2 monomers have been reported, and many reviews have been published [1,2,14-16]. [Pg.3]

Divinyl esters reported first by us are efficient monomers for polyester production under mild reaction conditions. In the lipase PF-catalyzed polymerization of divinyl adipate and 1,4-butanediol in diisopropyl ether at 45°C, a polyester with molecular weight of 6.7 x 10 was formed, whereas adipic acid and diethyl adipate did not afford the polymeric materials under similar reaction conditions (Scheme 3). [Pg.214]

Although polymers in-service are required to be resistant toward hydrolysis and solar degradation, for polymer deformulation purposes hydrolysis is an asset. Highly crystalline materials such as compounded polyamides are difficult to extract. For such materials hydrolysis or other forms of chemolysis render additives accessible for analysis. Polymers, which may profitably be depolymerised into their monomers by hydrolysis include PET, PBT, PC, PU, PES, POM, PA and others. Hydrolysis occurs when moisture causes chain scissions to occur within the molecule. In polyesters, chain scissions take place at the ester linkages (R-CO-O-R ), which causes a reduction in molecular weight as well as in mechanical properties. Polyesters show their susceptibility to hydrolysis with dramatic shifts in molecular weight distribution. Apart from access to the additives fraction, hydrolysis also facilitates molecular characterisation of the polymer. In this context, it is noticed that condensation polymers (polyesters, -amides, -ethers, -carbonates, -urethanes) have also been studied much... [Pg.152]

Extraction or dissolution almost invariably will cause low-MW material in a polymer to be present to some extent in the solution to be chromatographed. Solvent peaks interfere especially in trace analysis solvent impurities also may interfere. For identification or determination of residual solvents in polymers it is mandatory to use solventless methods of analysis so as not to confuse solvents in which the sample is dissolved for analysis with residual solvents in the sample. Gas chromatographic methods for the analysis of some low-boiling substances in the manufacture of polyester polymers have been reviewed [129]. The contents of residual solvents (CH2C12, CgHsCI) and monomers (bisphenol A, dichlorodiphenyl sulfone) in commercial polycarbonates and polysulfones were determined. Also residual monomers in PVAc latices were analysed by GC methods [130]. GC was also... [Pg.195]

There is considerable interest in synthesizing copolymers. This is actually possible if organisms are confronted with mixtures of so-called related and unrelated substrates. Copolymers can also be synthesized from unrelated substrates, e.g., from glucose and gluconate. The 3-hydroxydecanoate involved in the polyester is formed by diversion of intermediates from de novo fatty-acid synthesis [41,42]. Related , in this context, refers to substrates for which the monomer in the polymer is always of equal carbon chain length to that of the substrate offered. Starting from related substrates, the synthesis pathway is closely connected to the fatty-acid /1-oxidation cycle [43]. In Pseudomonas oleovor-ans, for example, cultivated on octane, octanol, or octanoic acid, the synthesized medium chain length polyester consists of a major fraction of 3-hydroxyoc-tanoic acid and a minor fraction of 3-hydroxyhexanoic acid. If P. oleovorans is cultivated on nonane, nonanol, or nonanoic acid, the accumulated polyester comprises mainly of 3-hydroxynonanoate [44]. [Pg.130]

Polyester sheets require pigments which are fast to certain solvents. A pigment that is used to color polyester dissolved in styrene must therefore be completely fast to both polyester and styrene monomer. In order to tolerate the diallyl ph-thalate process, which involves dissolving polyester in acetone, a pigment should be completely fast to acetone. [Pg.151]

The future direction of polyester R D efforts is likely to involve further progress in polyester synthesis given the wide range of potential monomer combinations, new blending technology and the use of advanced functional additives such as nanoclay reinforcements, reactive impact modifiers, anti-hydrolysis agents and chain extenders. [Pg.1]

End uses. Its a little curious that the two major end uses for EG are so different. One is -a consumer product the other is a feedstock for more complicated chemistry. The reasons have to do with two separate properties of EG, one physical property, one chemical property. Because of EG s low freezing point, it is the main ingredient in automotive antifreeze. Because it is so chemically reactive, it is used as a monomer in making polyester polymers and PET, the plastic in the ubiquitous water and drink bottles. [Pg.153]

Pitt et al. [65], and more recently, Albertsson et al. [73], have prepared chemically cross-linked aliphatic polyesters by ROP of the corresponding cyclic ester monomers in the presence of Y,y -bis(e-caprolactone)-type comonomers (Scheme 17). The cross-linked films displayed different swelling behaviors, degradability, and elastomeric properties depending on the nature of the lactone and composition of the comonomers feed. [Pg.27]

Table 10.3 summarizes the uses of propylene oxide. Propylene glycol is made by hydrolysis of propylene oxide. The student should develop the mechanism for this reaction, which is similar to the ethylene oxide to ethylene glycol conversion (Chapter 9, Section 8). Propylene glycol is a monomer in the manufacture of unsaturated polyester resins, which are used for boat and automobile bodies, bowling balls, and playground equipment. [Pg.170]


See other pages where Monomers in polyesters is mentioned: [Pg.271]    [Pg.271]    [Pg.543]    [Pg.134]    [Pg.271]    [Pg.271]    [Pg.543]    [Pg.134]    [Pg.304]    [Pg.31]    [Pg.292]    [Pg.18]    [Pg.129]    [Pg.19]    [Pg.40]    [Pg.60]    [Pg.63]    [Pg.211]    [Pg.217]    [Pg.314]    [Pg.269]    [Pg.25]    [Pg.241]    [Pg.311]    [Pg.173]    [Pg.664]    [Pg.305]    [Pg.541]    [Pg.320]   
See also in sourсe #XX -- [ Pg.96 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Polyesters monomers

© 2024 chempedia.info