Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles surface tension

Ruckenstein and Huber [6] worked out a different model by trying to eliminate the shielding parameter and the problems associated with it. They introduced a global interaction parameter, Aexperimentally determinable parameter from hydrocarbon-polymer solution surface tension measurements. The use of macroscopic parameters such as the surface tension to describe local molecular interactions between the micelle core and its environment has been criticised recently [7]. Furthermore, the surface tension depends on the polymer concentration therefore, it is not determined unambiguously at which composition the surface tension should be measured. [Pg.179]

The type of behavior shown by the ethanol-water system reaches an extreme in the case of higher-molecular-weight solutes of the polar-nonpolar type, such as, soaps and detergents [91]. As illustrated in Fig. Ul-9e, the decrease in surface tension now takes place at very low concentrations sometimes showing a point of abrupt change in slope in a y/C plot [92]. The surface tension becomes essentially constant beyond a certain concentration identified with micelle formation (see Section XIII-5). The lines in Fig. III-9e are fits to Eq. III-57. The authors combined this analysis with the Gibbs equation (Section III-SB) to obtain the surface excess of surfactant and an alcohol cosurfactant. [Pg.69]

Surfactants lower the surface tension of water, typically from 72 to ca 30—35 mN/m (= dyn/cm), and many surfactants have a strong effect on the contact angle when used at low concentrations. Both changes help dewatering. Too much surfactant, near or above the critical micelle concentration... [Pg.21]

An interesting change of the UV-absorbances with electrolyte concentration was observed for A18 and T18, as shown in Fig. 5. The molar extinction coefficient of A18 decreased by about 7% at 0.09 mM, and that of T18 about 10% at 0.16 mM. These concentrations may correspond to the critical micelle concentration, since the cmc observed from the surface tension measurements were about 0.1 mM for both A18 and T18. [Pg.146]

Figure 20 shows the plot of the surface tension vs. the logarithm of the concentration (or-lg c-isotherms) of sodium alkanesulfonates C,0-C15 at 45°C. In accordance with the general behavior of surfactants, the interfacial activity increases with growing chain length. The critical micelle concentration (cM) is shifted to lower concentration values. The typical surface tension at cM is between 38 and 33 mN/m. The ammonium alkanesulfonates show similar behavior, though their solubility is much better. The impact of the counterions is twofold First, a more polarizable counterion lowers the cM value (Fig. 21), while the aggregation number of the micelles rises. Second, polarizable and hydrophobic counterions, such as n-propyl- or isopropylammonium and n-butylammonium ions, enhance the interfacial activity as well (Fig. 22). Hydrophilic counterions such as 2-hydroxyethylammonium have the opposite effect. Table 14 summarizes some data for the dodecane 1-sulfonates. Figure 20 shows the plot of the surface tension vs. the logarithm of the concentration (or-lg c-isotherms) of sodium alkanesulfonates C,0-C15 at 45°C. In accordance with the general behavior of surfactants, the interfacial activity increases with growing chain length. The critical micelle concentration (cM) is shifted to lower concentration values. The typical surface tension at cM is between 38 and 33 mN/m. The ammonium alkanesulfonates show similar behavior, though their solubility is much better. The impact of the counterions is twofold First, a more polarizable counterion lowers the cM value (Fig. 21), while the aggregation number of the micelles rises. Second, polarizable and hydrophobic counterions, such as n-propyl- or isopropylammonium and n-butylammonium ions, enhance the interfacial activity as well (Fig. 22). Hydrophilic counterions such as 2-hydroxyethylammonium have the opposite effect. Table 14 summarizes some data for the dodecane 1-sulfonates.
The poor solubility of higher sodium alkanesulfonates cited above is reflected in the surface tension vs. concentration plots of sodium pentadecane 4-sulfonate (Fig. 26). Because below the critical micelle concentration the solubility limit is reached, a break in the a-c plot occurs. The problem of solubility properties of alkanesulfonates below the point at which the hydrated crystals or solid... [Pg.180]

Table 17 shows the CMCs of sodium alcohol propoxysulfates at 20°C determined from surface tension measurements by the maximum bubble pressure [127] and Table 18 shows the critical micelle concentrations of sodium pro-poxylated octylphenol and propoxylated nonylphenol sulfates. Surface tension... [Pg.254]

Schulze [51] described an extensive study on C12-C14 ether carboxylic acid sodium salt (4.5 mol EO) in terms of surface tension, critical micelle concentration (CMC), wetting, detergency, foam, hardness stability, and lime soap dispersing properties. He found good detergent effect compared to the etho-xylated C16-C18 fatty alcohol (25 mol EO) independent of CaCl2 concentration, there was excellent soil suspending power, low surface tension, and fewer Ca deposits than with alkylbenzenesulfonate. [Pg.323]

AOS at this proportion the micelle promotion tendency of AOS in the mixture is clearly optimal. At this composition, the authors have also observed a minimum in the surface tension vs. composition plot, and maximum performance benefits in detergency tests (see below). [Pg.375]

FIG. 1 Critical micelle concentration as a function of the number of carbon atoms in the hydrophobic rest of sodium a-sulfo fatty acid methyl esters. Methods O, surface tension +, conductivity A, solubilization of a dye x, solubility (all without electrolyte) , surface tension with a constant electrolyte concentration of 5 x 10"2 mol/L. (From Ref. 57.)... [Pg.473]

Phosphorus-containing surfactants are amphiphilic molecules, exhibiting the same surface-active properties as other surfactants. That means that they reduce the surface tension of water and aqueous solutions, are adsorbed at interfaces, form foam, and are able to build micelles in the bulk phase. On account of the many possibilities for alteration of molecular structure, the surface-active properties of phosphorus-containing surfactants cover a wide field of effects. Of main interest are those properties which can only be realized with difficulty or in some cases not at all by other surfactants. Often even quantitative differences are highly useful. [Pg.590]

When the CMC determination is made by surface tension measurements, the resulting curve appears without minimum as a single surfactant. It is probable that an inversion takes place through the adsorption of the LSDA onto the surface of the Ca soap micelle, so that complete precipitation does not occur [23]. Zhang and Xiao [32] are of the opinion that the dispersion comes from the union of LSDA with the free ionic soap molecules. The particles from the soap-LSDA mixture are far larger than the corresponding soap molecules in soft water and therefore result in turbidity in hard water. [Pg.641]

In another study of the physical behavior of soap-LSDA blends, Weil and Linfield [35] showed that the mechanism of action of such mixtures is based on a close association between the two components. In deionized water this association is mixed micellar. Surface tension curves confirm the presence of mixed micelles in deionized water and show a combination of optimum surface active properties, such as low CMC, high surface concentration, and low surface concentration above the CMC. Solubilization of high Krafft point soap by an LSDA and of a difficulty soluble LSDA by soap are related results of this association. Analysis of dispersions of soap-LSDA mixtures in hard water shows that the dispersed particles are mixtures of soap and LSDA in the same proportion as they were originally added. These findings are inconsistent with the view that soap reacts separately with hard water ions and that the resulting lime soap is suspended by surface adsorption of LSDA. The suspended particles are responsible for surface-active properties and detergency and do not permit deposits on washed fabric unlike those found after washing with soap alone. [Pg.642]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

After only a small percentage of the monomer has been converted to polymer (in the presence of emulsifier), the initially low surface tension of the aqueous emulsion rises rather abruptly, indicating a decrease in the soap concentration in the aqueous phase of the emulsion. The soap concentration is then too low to maintain micelles, which may therefore be abandoned as a locus for further polymerization beyond this point. As additional evidence of the depletion of soap in the aqueous phase, monomer droplets are no longer stable, and upon discontinuing agitation a supernatant monomer layer is readily formed. [Pg.205]

Recently, the newly developed time-resolved quasielastic laser scattering (QELS) has been applied to follow the changes in the surface tension of the nonpolarized water nitrobenzene interface upon the injection of cetyltrimethylammonium bromide [34] and sodium dodecyl sulfate [35] around or beyond their critical micelle concentrations. As a matter of fact, the method is based on the determination of the frequency of the thermally excited capillary waves at liquid-liquid interfaces. Since the capillary wave frequency is a function of the surface tension, and the change in the surface tension reflects the ion surface concentration, the QELS method allows us to observe the dynamic changes of the ITIES, such as the formation of monolayers of various surfactants [34]. [Pg.426]

Figure 1 gives the measurements of surface tension used for determining the CMCs of sulfonate/Genapol and nonylphenol 30 E.O. mixtures, with the last surfactant being called a desorbent (this term will be justified below). Minimum in surface tension was seen only for a few nonionic solutions (e.g. NP 50 E.O.). In this case, we used dyes that, once solubilized in the micelles, cause the solution to change color, which is another way of measuring the CMC. [Pg.278]

When p approaches infinity, Equation 7 reveals that equals zero, which corresponds to infinitely fast sorption kinetics and to an equilibrium surfactant distribution. In this case Equation 6 becomes that of Bretherton for a constant-tension bubble. Equation 6 also reduces to Bretherton s case when a approaches zero. However, a - 0 means that the surface tension does not change its value with changes in surfactant adsorption, which is not highly likely. Typical values for a with aqueous surfactants near the critical micelle concentration are around unity (2JL) ... [Pg.488]

The physicochemical data underline the striking influence of the dicyclopentadienyl unit on the properties of these silicone surfactants. In comparison to conventional products [7], the critical micelle formation concentration was lowered for up to two orders of magnitude whereas the minimum surface tension reached rose only slightly. The data collected indicate that the type of surfactant has been changed from the initial "effective" to a more "efficient" one. [Pg.267]

It was mentioned previously that the narrow range of concentrations in which sudden changes are produced in the physicochemical properties in solutions of surfactants is known as critical micelle concentration. To determine the value of this parameter the change in one of these properties can be used so normally electrical conductivity, surface tension, or refraction index can be measured. Numerous cmc values have been published, most of them for surfactants that contain hydrocarbon chains of between 10 and 16 carbon atoms [1, 3, 7], The value of the cmc depends on several factors such as the length of the surfactant chain, the presence of electrolytes, temperature, and pressure [7, 14], Some of these values of cmc are shown in Table 2. [Pg.293]

What characterizes surfactants is their ability to adsorb onto surfaces and to modify the surface properties. At the gas/liquid interface this leads to a reduction in surface tension. Fig. 4.1 shows the dependence of surface tension on the concentration for different surfactant types [39]. It is obvious from this figure that the nonionic surfactants have a lower surface tension for the same alkyl chain length and concentration than the ionic surfactants. The second effect which can be seen from Fig. 4.1 is the discontinuity of the surface tension-concentration curves with a constant value for the surface tension above this point. The breakpoint of the curves can be correlated to the critical micelle concentration (cmc) above which the formation of micellar aggregates can be observed in the bulk phase. These micelles are characteristic for the ability of surfactants to solubilize hydrophobic substances in aqueous solution. So the concentration of surfactant in the washing liquor has at least to be right above the cmc. [Pg.94]

The cmc is a key property, because it is related to the free energy difference between monomer and micelles. The onset of micellization is detected by marked changes in such properties as surface tension, refractive index and... [Pg.216]

Onset of micellization is detected by sharp changes in such properties as surface tension, refractivity or conductivity (of ionic micelles). To a first approximation the solution is assumed to contain monomeric amphiphiles, whose concentration is given by the cmc, and fully formed micelles, with submicellar aggregates playing a minor role. [Pg.219]

The critical concentration at which the first micelle forms is called the critical micelle concentration, or CMC. As the concentration of block copolymer chains increases in the solution, more micelles are formed while the concentration of nonassociated chains, called unimers, remains constant and is equal to the value of the CMC. This ideal situation corresponds to a system at thermodynamic equilibrium. However, experimental investigations on the CMC have revealed that its value depends on the method used for its determination. Therefore, it seems more reasonable to define phenomenologically the CMC as the concentration at which a sufficient number of micelles is formed to be detected by a given method [16]. In practical terms, the CMC is often determined from plots of the surface tension as a function of the logarithm of the concentration. The CMC is then defined as the concentration at which the surface tension stops decreasing and reaches a plateau value. [Pg.82]

The surface active agents (surfactants) may be cationic, anionic or non-ionic. Surfactants commonly used are cetyltrimethyl ammonium bromide (CTABr), sodium lauryl sulphate (NaLS) and triton-X, etc. The surfactants help to lower the surface tension at the monomer-water interface and also facilitate emulsification of the monomer in water. Because of their low solubility surfactants get fully dissolved or molecularly dispersed only at low concentrations and at higher concentrations micelles are formed. The highest concentration where in all the molecules are in dispersed state is known as critical micelle concentration (CMC). The CMC values of some surfactants are listed in table below. [Pg.16]

Changes in the shape of the absorption spectrum correspond very well with micelle formation. The ratio of absorbance at 550 nm to that at 500 nm(both are absorptions of merocyanine) is constant below the CMC whereas the value increases continuously with concentration above CMC. This indicates that the merocyanine is a sensitive probe to detect micelle formation. During the photoirradiation experiment shown in Figure 2, the ratio of absorbance started to increase at the A /Aq value where the surface tension showed a sudden drop. [Pg.212]

When the initial concentration of the merocyanine form is lower than the CMC of the spiropyran form, the change in surface tension is gradual all through the progression of photoreaction. The value of Ajjq/Acqq remains constant during photoirradiation. Unfortunately, reversibility of this photochromism is poor and the micelle formation/dissociation cycle deteriorates rapidly. [Pg.212]

Performance Indices Quality Factors Optimum E1LB Critical micelle concentration (CMC) Soil solubilization capacity Krafft point (ionic surfactants only) Cloud point (nonionic surfactants only) Viscosity Calcium binding capacity Surface tension reduction at CMC Dissolution time Material and/or structural attributes... [Pg.242]


See other pages where Micelles surface tension is mentioned: [Pg.237]    [Pg.240]    [Pg.1442]    [Pg.771]    [Pg.473]    [Pg.523]    [Pg.18]    [Pg.32]    [Pg.33]    [Pg.208]    [Pg.94]    [Pg.100]    [Pg.22]    [Pg.912]    [Pg.84]    [Pg.211]    [Pg.32]    [Pg.398]    [Pg.241]    [Pg.86]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Micelle surface

© 2024 chempedia.info