Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary waves frequency

However, such a simple theory has its own limitations. One of them is that relaxation of the Debye plasma cannot follow the high frequency capillary waves, and their contribution to surface corrugation will not be seen by electrolyte ions. In Ref. [295], one can find a discussion of the yet unsolved dynamic aspects of the problem and suggestion for a correction, taking into account the incomplete adiabaticity. [Pg.122]

The scattering techniques, dynamic light scattering or photon correlation spectroscopy involve measurement of the fluctuations in light intensity due to density fluctuations in the sample, in this case from the capillary wave motion. The light scattered from thermal capillary waves contains two observables. The Doppler-shifted peak propagates at a rate such that its frequency follows Eq. IV-28 and... [Pg.124]

In the past five years, it has been demonstrated that the QELS method is a versatile technique which can provide much information on interfacial molecular dynamics [3 9]. In this review, we intend to show interfacial behavior of molecules elucidated by the QELS method. In Section II, we present the principle and the experimental apparatus of the QELS along with the historical background. The dynamic collective behavior of molecules at liquid-liquid interfaces was first obtained by improving the time resolution of the QELS method. In Section III, we show the molecular collective behavior of surfactant molecules derived from the analysis of the time courses of capillary wave frequencies. Since the... [Pg.239]

As reviewed above, there have been many QELS studies on liquid surfaces. However, until a few years ago, reports were scarce on molecular dynamics at liquid-liquid interfaces which used time courses of capillary wave frequency. Molecular collective behavior at liquid-liquid interfaces from a QELS study was first reported by Zhang et al. in 1997 [5]. [Pg.241]

The capillary wave frequency is detected by an optical heterodyne technique. The laser beam, quasi-elastically scattered by the capillary wave at the liquid-liquid interface, is accompanied by a Doppler shift. The scattered beam is optically mixed with the diffracted beam from the diffraction grating to generate an optical beat in the mixed light. The beat frequency obtained here is the same as the Doppler shift, i.e., the capillary wave frequency. By selecting the order of the mixed diffracted beam, we can change the wavelength of the observed capillary wave according to Eq. (11). [Pg.242]

The molecular collective behavior of surfactant molecules has been analyzed using the time courses of capillary wave frequency after injection of surfactant aqueous solution onto the liquid-liquid interface [5,8]. Typical power spectra for capillary waves excited at the water-nitrobenzene interface are shown in Fig. 3 (a) without CTAB (cetyltrimethy-lammonium bromide) molecules, and (b) 10 s after the injection of CTAB solution to the water phase [5]. The peak appearing around 10-13 kHz represents the beat frequency, i.e., the capillary wave frequency. The peak of the capillary wave frequency shifts from 12.5 to 10.0kHz on the injection of CTAB solution. This is due to the decrease in interfacial tension caused by the increased number density of surfactant molecules at the interface. Time courses of capillary wave frequency after the injection of different CTAB concentrations into the aqueous phase are reproduced in Fig. 4. An anomalous temporary decrease in capillary wave frequency is observed when the CTAB solution beyond the CMC (critical micelle concentration) was injected. The capillary wave frequency decreases rapidly on injection, and after attaining its minimum value, it increases... [Pg.243]

FIG. 4 Capillary wave frequency vs. time after injection of the CTAB aqueous solutions (0.5 mL, 2-30 mM). The concentrations of the injected solution (C) are shown, along with the average concentrations (Cg ) in the aqueous phase. [Pg.244]

FIG. 6 Time courses of the capillary wave frequencies after injection of (a) SDS and (b) Triton X-... [Pg.245]

FIG. 8 Capillary wave frequency dependence on the concentrations of TBAB and CgH50Na. [Pg.247]

Recently, the newly developed time-resolved quasielastic laser scattering (QELS) has been applied to follow the changes in the surface tension of the nonpolarized water nitrobenzene interface upon the injection of cetyltrimethylammonium bromide [34] and sodium dodecyl sulfate [35] around or beyond their critical micelle concentrations. As a matter of fact, the method is based on the determination of the frequency of the thermally excited capillary waves at liquid-liquid interfaces. Since the capillary wave frequency is a function of the surface tension, and the change in the surface tension reflects the ion surface concentration, the QELS method allows us to observe the dynamic changes of the ITIES, such as the formation of monolayers of various surfactants [34]. [Pg.426]

Ultrasonic atomization is sometimes also termed capillary-wave atomization. In its most common form, 142 a thin film of a molten metal is atomized by the vibrations of the surface on which it flows. Standing waves are induced in the thin film by an oscillator that vibrates vertically to the film surface at ultrasonic frequencies. The liquid metal film is broken up at the antinodes along the surface into fine droplets once the amplitude of the capillary wave exceeds a certain value. The most-frequent diameter of the droplets generated is approximately one fourth of the wavelength of the capillary wave,1 421 and thus decreases with increasing frequency. [Pg.113]

Analytical and empirical correlations for droplet sizes generated by ultrasonic atomization are listed in Table 4.14 for an overview. In these correlations, Dm is the median droplet diameter, X is the wavelength of capillary waves, co0 is the operating frequency, a is the amplitude, UL0 is the liquid velocity at the nozzle exit in USWA, /Jmax is the maximum sound pressure, and Us is the speed of sound in gas. Most of the analytical correlations are derived on the basis of the capillary wave theory. Experimental observations revealed that the mean droplet size generated from thin liquid films on... [Pg.276]

There are several experimental techniques suitable for studying e. Some of them are Relaxation after a sudden compression of the monolayer Electrocapillary waves An oscillatory barrier Light Scattering by thermally excited capillary waves. The first two techniques are used in the low - frequency range, below 1 Hz. The last one in the kilohertz range. [Pg.187]

Figure 3.19 shows the variation of the frequency shifts /s, a measure of the propagation velocity of the capillary waves, as a function of surface concentration T, which is the reciprocal A, for different polymers at a wavenumber k = 323 cm1. [Pg.188]

Fig. 4 General solution for the dispersion equation on water at 25 °C. The damping coefficient a vs. the real capillary wave frequency o> , for isopleths of constant dynamic dilation elasticity ed (solid radial curves), and dilational viscosity k (dashed circular curves). The plot was generated for a reference subphase at k = 32431 m 1, ad = 71.97 mN m-1, /i = 0mNsm 1, p = 997.0kgm 3, jj = 0.894mPas and g = 9.80ms 2. The limits correspond to I = Pure Liquid Limit, II = Maximum Velocity Limit for a Purely Elastic Surface Film, III = Maximum Damping Coefficient for the same, IV = Minimum Velocity Limit, V = Surface Film with an Infinite Lateral Modulus and VI = Maximum Damping Coefficient for a Perfectly Viscous Surface Film... Fig. 4 General solution for the dispersion equation on water at 25 °C. The damping coefficient a vs. the real capillary wave frequency o> , for isopleths of constant dynamic dilation elasticity ed (solid radial curves), and dilational viscosity k (dashed circular curves). The plot was generated for a reference subphase at k = 32431 m 1, ad = 71.97 mN m-1, /i = 0mNsm 1, p = 997.0kgm 3, jj = 0.894mPas and g = 9.80ms 2. The limits correspond to I = Pure Liquid Limit, II = Maximum Velocity Limit for a Purely Elastic Surface Film, III = Maximum Damping Coefficient for the same, IV = Minimum Velocity Limit, V = Surface Film with an Infinite Lateral Modulus and VI = Maximum Damping Coefficient for a Perfectly Viscous Surface Film...
Fig. 6 The effect of transverse viscosity on the polar plot of Fig. 4. The damping coefficient, a, is plotted vs. the real capillary wave frequency, 0> for several different transverse viscosities (/x in the figure has units of 10 5 mNsm ). Only the isopleths for Sd = 0 and k = 0 are shown to give the outermost loop of Fig. 4. The plot was generated using the same condition as in Fig. 4, k = 32 431 m, ad = 71.97mN nr1, p = 997.0 kg nr3, r) = 0.894 mPa s and g = 9.80 m s 2... Fig. 6 The effect of transverse viscosity on the polar plot of Fig. 4. The damping coefficient, a, is plotted vs. the real capillary wave frequency, 0> for several different transverse viscosities (/x in the figure has units of 10 5 mNsm ). Only the isopleths for Sd = 0 and k = 0 are shown to give the outermost loop of Fig. 4. The plot was generated using the same condition as in Fig. 4, k = 32 431 m, ad = 71.97mN nr1, p = 997.0 kg nr3, r) = 0.894 mPa s and g = 9.80 m s 2...
These nebulizers rely on a transducer made from a piezo-electric crystal which produces high frequency sound waves in the liquid in the nebulizing unit. The waves give rise to vertical capillaries of liquid ( fountains ) which, when the amplitude of the energy applied is sufficient, break up to provide an aerosol. [Pg.264]

Capillary waves — Capillary waves are triggered by thermal fluctuation and recovered by -> surface tension on an interface between liquid phases rather than by gravity [i]. They propagate along the interface [ii], and they distort the sharp boundary at immiscible oil water interfaces. The frequency of capillary waves, which has been determined with light scattering measurements [iii, iv], is predicted to evaluate time-dependent local surface tensions without any contact with the surface. [Pg.73]

Interface between two liquid solvents — Two liquid solvents can be miscible (e.g., water and ethanol) partially miscible (e.g., water and propylene carbonate), or immiscible (e.g., water and nitrobenzene). Mutual miscibility of the two solvents is connected with the energy of interaction between the solvent molecules, which also determines the width of the phase boundary where the composition varies (Figure) [i]. Molecular dynamic simulation [ii], neutron reflection [iii], vibrational sum frequency spectroscopy [iv], and synchrotron X-ray reflectivity [v] studies have demonstrated that the width of the boundary between two immiscible solvents comprises a contribution from thermally excited capillary waves and intrinsic interfacial structure. Computer calculations and experimental data support the view that the interface between two solvents of very low miscibility is molecularly sharp but with rough protrusions of one solvent into the other (capillary waves), while increasing solvent miscibility leads to the formation of a mixed solvent layer (Figure). In the presence of an electrolyte in both solvent phases, an electrical potential difference can be established at the interface. In the case of two electrolytes with different but constant composition and dissolved in the same solvent, a liquid junction potential is temporarily formed. Equilibrium partition of ions at the - interface between two immiscible electrolyte solutions gives rise to the ion transfer potential, or to the distribution potential, which can be described by the equivalent two-phase Nernst relationship. See also - ion transfer at liquid-liquid interfaces. [Pg.358]


See other pages where Capillary waves frequency is mentioned: [Pg.218]    [Pg.218]    [Pg.728]    [Pg.191]    [Pg.239]    [Pg.240]    [Pg.241]    [Pg.244]    [Pg.246]    [Pg.53]    [Pg.168]    [Pg.277]    [Pg.36]    [Pg.207]    [Pg.66]    [Pg.68]    [Pg.69]    [Pg.70]    [Pg.74]    [Pg.76]    [Pg.77]    [Pg.79]    [Pg.560]    [Pg.560]    [Pg.59]    [Pg.60]    [Pg.61]   
See also in sourсe #XX -- [ Pg.60 , Pg.62 , Pg.63 , Pg.65 , Pg.67 ]

See also in sourсe #XX -- [ Pg.60 , Pg.62 , Pg.63 , Pg.65 , Pg.67 ]




SEARCH



Capillary waves

Complex wave frequency, capillary waves

Time course, capillary wave frequency

Waves wave frequency

© 2024 chempedia.info