Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloid Size

Although the remainder of this contribution will discuss suspensions only, much of the theory and experimental approaches are applicable to emulsions as well (see [2] for a review). Some other colloidal systems are treated elsewhere in this volume. Polymer solutions are an important class—see section C2.1. For surfactant micelles, see section C2.3. The special properties of certain particles at the lower end of the colloidal size range are discussed in section C2.17. [Pg.2667]

At equilibrium, in order to achieve equality of chemical potentials, not only tire colloid but also tire polymer concentrations in tire different phases are different. We focus here on a theory tliat allows for tliis polymer partitioning [99]. Predictions for two polymer/colloid size ratios are shown in figure C2.6.10. A liquid phase is predicted to occur only when tire range of attractions is not too small compared to tire particle size, 5/a > 0.3. Under tliese conditions a phase behaviour is obtained tliat is similar to tliat of simple liquids, such as argon. Because of tire polymer partitioning, however, tliere is a tliree-phase triangle (ratlier tlian a triple point). For smaller polymer (narrower attractions), tire gas-liquid transition becomes metastable witli respect to tire fluid-crystal transition. These predictions were confinned experimentally [100]. The phase boundaries were predicted semi-quantitatively. [Pg.2688]

J) The extreme fineness of iadividual clay particles, which may be of colloidal size ia at least one dimension. Clay minerals are usually platy ia shape, and less often lathlike and tubular or scroU shaped (13). Because of this fineness clays exhibit the surface chemical properties of coUoids (qv) (14). Some clays possess relatively open crystal lattices and show internal surface colloidal effects. Other minerals and rock particles, which are not hydrous aluminosihcates but which also show colloidal dimensions and characteristics, may occur intimately intermixed with the clay minerals and play an essential role. [Pg.194]

The vibratoiy-tube mill is also suited to wet milhng. In fine wet milling this narrow residence time distribution lends itself to a simple open circuit with a small throughput. But for tasks of grinding to colloid-size range, the stirred media mill has the advantage. [Pg.1857]

Ion Any particle of less than colloidal size possessing either a positive or a negative electric charge. [Pg.438]

The dilution-discard method is the traditional (sometimes the only) way to control the constant increase of colloidal size cuttings in weighted water-base muds. It is effective but also expensive, due to the high cost of barites used to replace the total weighting material in the discard. The daily mud dilutions amount to an average of 5 to 10% of the total mud system. [Pg.691]

Drilled solids include active drilled solids and inactive drilled solids. Clays and shales are considered to be active drilled solids they disperse into colloidal size readily and become detrimental to drilling by increasing the apparent viscosity and gel strength of the mud. Inactive drilled solids are sand, dolomite, limestone, etc. if they occur in colloidal size, these solids may increase plastic viscosity of the drilling mud. [Pg.692]

The invasion of particles can be eliminated either by using solids-free systems or by formation of a competent filter cake on the rock surface. If the components forming the filter cake are correctly chosen and blended, they will form a very effective downhole filter element. This ensures that colloidal sized clays or polymeric materials are retained within the filter cake and do not enter the formation. Further protection is provided by ensuring that a thin filter cake is formed due to low dynamic and static filtrate losses. Thus, the cake may be easily removed when the well is brought into production. Additionally, the filter cake can be soluble in acid or oil. [Pg.703]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

Another classification scheme is based on the size of the dispersed particles within the dispersion medium (Table 2). The particles of the dispersed phase may vary considerably in size, from large particles visible to the naked eye, down to particles in the colloidal size range, and particles of atomic... [Pg.242]

A colloid is defined as a system consisting of discrete particles in the size range of 1 nm to 1 pm, distributed within a continuous phase [153], On the basis of the interaction of particles, molecules, or ions of the disperse phase with molecules of the dispersion medium-, colloidal systems can be classified as being lyophilic or lyophobic. In lyophilic systems, the disperse phase molecules are dissolved within the continuous phase and in the colloidal size range or spontaneously form aggregates in the colloidal size range (association systems). In lyophobic systems, the disperse phase is very poorly soluble or insoluble in the continuous phase. During the last several decades, the use of colloids in... [Pg.273]

In both experimental and theoretical investigations on particle deposition steady-state conditions were assumed. The solution of the non-stationary transport equation is of more recent vintage [102, 103], The calculations of the transient deposition of particles onto a rotating disk under the perfect sink boundary conditions revealed that the relaxation time was of the order of seconds for colloidal sized particles. However, the transition time becomes large (102 104 s) when an energy barrier is present and an external force acts towards the collector. [Pg.212]

Similar affinity of polonium and plutonium for marine surfaces implies that studies of the more easily measured polonium might be valuable in predicting some consequences of plutonium disposal in die oceans [8-11]. Rates at which plutonium and polonium deposit out of seawater onto surfaces of giant brown algae and inert surfaces, such as glass and cellulose, suggest that both nuclides are associated in coastal seawater with colloidal sized species having diffusivities of about 3 x 10"7 cm2/s. The parallel behaviour possibly... [Pg.344]

Chen, M. and Wang, W.-X. (2001). Bioavailability of natural colloid-bound iron to marine plankton influences of colloidal size and aging, Limnol. Oceanogr., 46, 1956-1967. [Pg.533]

Analytical-operational Difficulties. In order to work close to the conditions in natural waters, very low concentrations of metal ions (in the nanomolar range) and of particles as well as pH values in the neutral range have to be used. Analytical difficulties occur because of undesired adsorption of metal ions to the experimental devices (walls of beakers, glass filtration devices, etc.) and of insufficient separation of the particulate and dissolved phase (particles in the colloidal size range). [Pg.374]

There are many situations in which polymer networks contain a filler. The particle size is frequently chosen to be in the colloidal size range. [Pg.44]

In cases where water is turbid, samples are generally filtered through glass fiber Alters (GEE) prior to percolation through sorbents. This step recovers waterborne particulates and microorganisms with average diameters >0.7 pm, which are analyzed separately. However, chemicals associated with colloid-sized particulates and DOC are not removed by GFFs. [Pg.4]

Donnan equilibrium phys chem The particular eq ul 11 bri u m set up when two coexisting phases are subject to the restriction that one or more of the ionic components cannot pass from one phase into the other commonly, this restriction is caused by a membrane which is permeable to the solvent and small ions but impermeable to colloidal ions or charged particles of colloidal size. Also known as Gibbs-Donnan equilibrium. dO-non e-kwo lib-re-om ... [Pg.124]

After delivery to the ocean, clay minerals react with seawater. The processes that alter the chemical composition of the terrigenous clay minerals during the first few months of exposure are termed halmyrolysis. These include (1) cation exchange, (2) fixation of ions into inaccessible sites, and (3) some isomorphic substitutions. Another important transfiarmation is flocculation of very small (colloidal-size) clay particles into larger ones. [Pg.362]

Some marine chemists define the upper end of the colloid size range as either 10 pm (Figure 3.2) or 0.1 xm (Figure 5 3)... [Pg.564]

Lipid nanodispersions (SLN and NLC) are complex, thermodynamically unstable systems. The colloidal size of the particles alters physical features (e.g., increasing solubihty and the tendency to form supercooled melts). The complex structured lipid matrix may include hquid phases and various lipid modifications that differ in the capacity to incorporate drugs. Lipid molecules of variant modifications may differ in their mobility. Moreover, the high amount of emulsifier used may result in liposome or micelle formation in addition to the nanoparticles. [Pg.5]

Contaminants bound to colloids also may lead to an increase in the apparent solubility of the compounds. Most colloidal phases are effective sorbents of low-solubility contaminants, due to their large surface area. For example. Fig. 8.21 depicts the solubilization of p-nitrophenol into hydrophobic microdomains, which defines the trace metal level in the groundwater of a coastal watershed (Sanudo-Wilhelmy et al. 2002). The authors emphasize that the (heavy) metals contained in the colloidal size fraction in some instances may reach more than 50% of what is considered dissolved metal this should be considered to properly understand the cycling of metals and carbon in the subsurface water. [Pg.173]


See other pages where Colloid Size is mentioned: [Pg.1710]    [Pg.2680]    [Pg.511]    [Pg.400]    [Pg.38]    [Pg.404]    [Pg.244]    [Pg.283]    [Pg.110]    [Pg.176]    [Pg.372]    [Pg.52]    [Pg.331]    [Pg.427]    [Pg.47]    [Pg.160]    [Pg.275]    [Pg.396]    [Pg.399]    [Pg.489]    [Pg.162]    [Pg.125]    [Pg.216]    [Pg.369]    [Pg.376]    [Pg.518]    [Pg.84]    [Pg.45]    [Pg.6]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



© 2024 chempedia.info