Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilic head

Figure B3.6.4. Illustration of tliree structured phases in a mixture of amphiphile and water, (a) Lamellar phase the hydrophilic heads shield the hydrophobic tails from the water by fonning a bilayer. The amphiphilic heads of different bilayers face each other and are separated by a thin water layer, (b) Hexagonal phase tlie amphiphiles assemble into a rod-like structure where the tails are shielded in the interior from the water and the heads are on the outside. The rods arrange on a hexagonal lattice, (c) Cubic phase amphiphilic micelles with a hydrophobic centre order on a BCC lattice. Figure B3.6.4. Illustration of tliree structured phases in a mixture of amphiphile and water, (a) Lamellar phase the hydrophilic heads shield the hydrophobic tails from the water by fonning a bilayer. The amphiphilic heads of different bilayers face each other and are separated by a thin water layer, (b) Hexagonal phase tlie amphiphiles assemble into a rod-like structure where the tails are shielded in the interior from the water and the heads are on the outside. The rods arrange on a hexagonal lattice, (c) Cubic phase amphiphilic micelles with a hydrophobic centre order on a BCC lattice.
A fiirther step in coarse graining is accomplished by representing the amphiphiles not as chain molecules but as single site/bond entities on a lattice. The characteristic architecture of the amphiphile—the hydrophilic head and hydrophobic tail—is lost in this representation. Instead, the interaction between the different lattice sites, which represent the oil, the water and the amphiphile, have to be carefiilly constmcted in order to bring about the amphiphilic behaviour. [Pg.2379]

A typical biomembrane consists largely of amphiphilic lipids with small hydrophilic head groups and long hydrophobic fatty acid tails. These amphiphiles are insoluble in water (<10 ° mol L ) and capable of self-organization into uitrathin bilaycr lipid membranes (BLMs). Until 1977 only natural lipids, in particular phospholipids like lecithins, were believed to form spherical and related vesicular membrane structures. Intricate interactions of the head groups were supposed to be necessary for the self-organization of several ten thousands of... [Pg.350]

Within a series with a fixed hydrophilic head group, detergency increases with increasing carbon chain length, reaches a maximum, and then decreases. This behavior frequentiy reflects a balance between increased surface activity of the monomer and decreased monomer concentration with increased surface activity. Similar effects are seen in surfactants in biological systems. [Pg.529]

Amphiphilic molecules (surfactants) are composed of two different parts hydrophobic tail and hydrophilic head [1 ]. Due to their chemical structure they self-assemble into internal surfaces in water solutions or in mixtures of oil and water, where the tails are separated from the water solvent. These surfaces can form closed spherical or cylindrical micelles or bicontinuous phases [3,5]. In the latter case a single surface extends over the volume of the system and divides it into separated and mutually interwoven subvolumes. [Pg.686]

Phospholipids are a major component of all biological membranes together with glycolipids and cholesterol. Due to their polar nature, i.e. hydrophilic head and hydrophobic tail, phospholipids form in water vesicles or liposomes. [Pg.970]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

A review is given of the application of Molecular Dynamics (MD) computer simulation to complex molecular systems. Three topics are treated in particular the computation of free energy from simulations, applied to the prediction of the binding constant of an inhibitor to the enzyme dihydrofolate reductase the use of MD simulations in structural refinements based on two-dimensional high-resolution nuclear magnetic resonance data, applied to the lac repressor headpiece the simulation of a hydrated lipid bilayer in atomic detail. The latter shows a rather diffuse structure of the hydrophilic head group layer with considerable local compensation of charge density. [Pg.106]

Traditional amphiphiles contain a hydrophilic head group and the hydrophobic hydrocarbon chain(s). The molecules are spread at molecular areas greater (-2-10 times) than that to which they will be compressed. The record of surface pressure (II) versus molecular area (A) at constant temperature as the barrier is moved forward to compress the monolayer is known as an isotherm, which is analogous to P-V isotherms for bulk substances. H-A isotherm data provide information on the molecular packing, the monolayer stability as de-... [Pg.61]

The structure of these globular aggregates is characterized by a micellar core formed by the hydrophilic heads of the surfactant molecules and a surrounding hydrophobic layer constituted by their opportunely arranged alkyl chains whereas their dynamics are characterized by conformational motions of heads and alkyl chains, frequent exchange of surfactant monomers between bulk solvent and micelle, and structural collapse of the aggregate leading to its dissolution, and vice versa [2-7]. [Pg.474]

The main peculiarity of solutions of reversed micelles is their ability to solubilize a wide class of ionic, polar, apolar, and amphiphilic substances. This is because in these systems a multiplicity of domains coexist apolar bulk solvent, the oriented alkyl chains of the surfactant, and the hydrophilic head group region of the reversed micelles. Ionic and polar substances are hosted in the micellar core, apolar substances are solubilized in the bulk apolar solvent, whereas amphiphilic substances are partitioned between the bulk apolar solvent and the domain comprising the alkyl chains and the surfactant polar heads, i.e., the so-called palisade layer [24],... [Pg.475]

Sodium stearate is a typical surfactant molecule. It has an ionic, hydrophilic head and a nonpolar, hydrophobic tail. [Pg.870]

Some surfactants are used as emulsifiers in processed foods such as bottled salad dressing. An emulsifier causes normally incompatible liquids such as the oil and water in salad dressing to disperse in each other, by forming molecular connections between the liquids. The hydrophobic tails of emulsifier molecules Interact with oil molecules, while the hydrophilic heads on the emulsifier molecules interact with water molecules. [Pg.874]

Lecithin, a common phospholipid, has a hydrophobic tail and a hydrophilic head. [Pg.875]

Cell membranes consist of two layers of oriented lipid molecules (lipid bilayer membranes). The molecules of these two layers have their hydrocarbon tails toward each other, while the hydrophilic heads are outside (Fig. 30.1a). The mean distance between lipid heads is 5 to 6mn. Various protein molecules having a size commensurate with layer thickness float in the lipid layer. Part of the protein molecules are located on the surface of the lipid layer others thread through the layer (Fig. 30.1fc). Thus, the membrane as a whole is heterogeneous and has a mosaic structure. [Pg.576]

Surface active agents, more commonly known as surfactants, are the groups of chemical compounds that in the most common form constitute an ionic or polar portion (hydrophilic head) and a hydrocarbon portion (hydrophobic tail). The ionic or polar portion interacts strongly with the water via dipole-dipole or ion-dipole interactions and... [Pg.377]

PFCs are a large group of chemicals characterized by a fully fluorinated hydro-phobic chain and an hydrophilic head. These compounds are often used as coating... [Pg.182]

Only few attempts have been made recently to study the influence of the spacer between the silicone backbone and the hydrophilic head group on the interfacial properties of silicone surfactants [1,2,3]. Further the strong dispersion interactions caused by cyclic hydrocarbon sUuctures, especially the dicyclopentadienyl unit [4] have never been recognized to be an effective tool to counterbalance the known reverse effect of the methyl groups of the siloxanyl unit in coventional silicone surfactants. [Pg.267]

Figure 15.12 Detergent molecules can be used to solubilize carbon nanotubes by adsorption onto the surface through hydrophobic interactions and create half-micelle structures with the hydrophilic head groups facing outward into the aqueous environment. Figure 15.12 Detergent molecules can be used to solubilize carbon nanotubes by adsorption onto the surface through hydrophobic interactions and create half-micelle structures with the hydrophilic head groups facing outward into the aqueous environment.
Figure 22.1 The amphiphilic nature of phospholipids in solution drives the formation of complex structures. Spherical micelles may form in aqueous solution, wherein the hydrophilic head groups all point out toward the surrounding water environment and the hydrophobic tails point inward to the exclusion of water. Larger lipid bilayers may form by similar forces, creating sheets, spheres, and other highly complex morphologies. In non-aqueous solution, inverted micelles may form, wherein the tails all point toward the outer hydrophobic region and the heads point inward forming hexagonal shapes. Figure 22.1 The amphiphilic nature of phospholipids in solution drives the formation of complex structures. Spherical micelles may form in aqueous solution, wherein the hydrophilic head groups all point out toward the surrounding water environment and the hydrophobic tails point inward to the exclusion of water. Larger lipid bilayers may form by similar forces, creating sheets, spheres, and other highly complex morphologies. In non-aqueous solution, inverted micelles may form, wherein the tails all point toward the outer hydrophobic region and the heads point inward forming hexagonal shapes.

See other pages where Hydrophilic head is mentioned: [Pg.2377]    [Pg.351]    [Pg.353]    [Pg.1079]    [Pg.1079]    [Pg.208]    [Pg.427]    [Pg.427]    [Pg.149]    [Pg.531]    [Pg.532]    [Pg.533]    [Pg.147]    [Pg.1079]    [Pg.1079]    [Pg.696]    [Pg.442]    [Pg.637]    [Pg.442]    [Pg.656]    [Pg.873]    [Pg.876]    [Pg.356]    [Pg.807]    [Pg.243]    [Pg.256]    [Pg.266]    [Pg.320]    [Pg.859]    [Pg.860]   
See also in sourсe #XX -- [ Pg.376 ]

See also in sourсe #XX -- [ Pg.121 ]

See also in sourсe #XX -- [ Pg.56 ]

See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Hydrophilic head groups

Hydrophilic “head,” of surfactant

© 2024 chempedia.info