Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelle formation critical concentration

Critical Micelle Concentration. The rate at which the properties of surfactant solutions vary with concentration changes at the concentration where micelle formation starts. Surface and interfacial tension, equivalent conductance (50), dye solubilization (51), iodine solubilization (52), and refractive index (53) are properties commonly used as the basis for methods of CMC determination. [Pg.238]

Anionic Surfactants. PVP also interacts with anionic detergents, another class of large anions (108). This interaction has generated considerable interest because addition of PVP results in the formation of micelles at lower concentration than the critical micelle concentration (CMC) of the free surfactant the mechanism is described as a "necklace" of hemimicelles along the polymer chain, the hemimicelles being surrounded to some extent with PVP (109). The effective lowering of the CMC increases the surfactant s apparent activity at interfaces. PVP will increase foaming of anionic surfactants for this reason. [Pg.532]

One of the most important characteristics of the emulsifier is its CMC, which is defined as the critical concentration value below which no micelle formation occurs. The critical micelle concentration of an emulsifier is determined by the structure and the number of hydrophilic and hydrophobic groups included in the emulsifier molecule. The hydrophile-lipophile balance (HLB) number is a good criterion for the selection of proper emulsifier. The HLB scale was developed by W. C. Griffin [46,47]. Based on his approach, the HLB number of an emulsifier can be calculated by dividing... [Pg.196]

In the latter function, the reagent behaves as a surfactant and forms a cationic micelle at a concentration above the critical micelle concentration (1 x 10 4M for CTMB). The complexation reactions occurring on the surface of the micelles differ from those in simple aqueous solution and result in the formation of a complex of higher ligand to metal ratio than in the simple aqueous system this effect is usually accompanied by a substantial increase in molar absorptivity of the metal complex. [Pg.172]

In highly diluted solutions the surfactants are monodispersed and are enriched by hydrophil-hydrophobe-oriented adsorption at the surface. If a certain concentration which is characteristic for each surfactant is exceeded, the surfactant molecules congregate to micelles. The inside of a micelle consists of hydrophobic groups whereas its surface consists of hydrophilic groups. Micelles are dynamic entities that are in equilibrium with their surrounded concentration. If the solution is diluted and remains under the characteristic concentration, micelles dissociate to single molecules. The concentration at which micelle formation starts is called critical micelle concentration (cmc). Its value is characteristic for each surfactant and depends on several parameters [189-191] ... [Pg.88]

The physicochemical data underline the striking influence of the dicyclopentadienyl unit on the properties of these silicone surfactants. In comparison to conventional products [7], the critical micelle formation concentration was lowered for up to two orders of magnitude whereas the minimum surface tension reached rose only slightly. The data collected indicate that the type of surfactant has been changed from the initial "effective" to a more "efficient" one. [Pg.267]

A similar multiphase complication that should be kept in mind when discussing solutions at finite concentrations is possible micelle formation. It is well known that for many organic solutes in water, when the concentration exceeds a certain solute-dependent value, called the critical micelle concentration (cmc), the solute molecules are not distributed in a random uncorrelated way but rather aggregate into units (micelles) in which their distances of separation and orientations with respect to each other and to solvent molecules have strong correlations. Micelle formation, if it occurs, will clearly have a major effect on the apparent activity coefficient but the observation of the phenomenon requires more sophisticated analytical techniques than observation of, say, liquid-liquid phase separation. [Pg.79]

Therefore, the physical meaning of the solubility curve of a surfactant is different from that of ordinary substances. Above the critical micelle concentration the thermodynamic functions, for example, the partial molar free energy, the activity, the enthalpy, remain more or less constant. For that reason, micelle formation can be considered as the formation of a new phase. Therefore, the Krafft Point depends on a complicated three phase equilibrium. [Pg.4]

For pure nonionic EO adducts, increase in the number of oxyethylene groups in the molecule results in a decrease in the tendency to form micelles and an increase in the surface tension of the solution at the critical micelle concentration (1 ) (l. ) This change in surface activity is due to the greater surface area of the molecules in the adsorption layer and at the micellar surface as a result of the presence there of the highly hydrated polyoxyethylene chain. The reduction in the tendency to form micelles is due to the increase in the free energy of micelle formation as a result of partial dehydration of the polyoxyethylene chain during incorporation into the micelle ( 1 6) (17). [Pg.8]

Effect of Structure on Activity at the Critical Micelle Concentration and on the Free Energy of Micelle Formation... [Pg.73]

To understand micelle formation quantitatively, critical micelle concentrations (cmc) have to be determined for a large number of surf actants ( 5 ). When the cmc values of the surfactants with the same hydrophilic group (a homologous series) are examined, a nearly 3-fold decrease in cmc is observed for nonlonlc and zwitterionlc surfactants (1,2) upon the addition of a methylene group into the hydrocarbon chain, whereas, a 2-fold or only 1.8-fold reduction in cmc can be observed for univalent (1,2) and blvalent( ) ionic surfactants,respectively. [Pg.74]

In conclusion, micelle formation of an ionic surfactant is found to take place at a constant activity,i.e., critical micelle activity, cma, irrespective of counter ion concentration. [Pg.85]

In this system, in the aqueous phase, the micellar system, NaDDS, on addition of butanol would change in free energy due to mixed micelle formation (i. je. NaDDS+n-Butanol), as we showed in an earlier study (23). The cahnge in free energy is also observed from the fact that both the critical micelle concentration (c.m.c.) and the Krafft point of NaDDS solution change on addition of n-Butanol (23,... [Pg.334]

Inspection of Table 3.6 together with Scheme 3.11 reveals a few general trends. First of all, the effect seems to be connected to micelle formation. The data of Table 3.6 together with other results of detailed studies [132-133,136-139] show that the largest effect of the surfactants on the reaction rate can be observed around the critical micellar concentration (c.m.c.) of the amphiphiles. Accordingly, non-ionic surfactants (Brij, Tween) with very... [Pg.83]

FORMATION. Aqueous solutions of highly surface-active substances spontaneously tend to reduce interfacial energy of solute-solvent interactions by forming micelles. The critical micelle concentration (or, c.m.c.) is the threshold surfactant concentration, above which micelle formation (also known as micellization) is highly favorable. For sodium dodecyl sulfate, the c.m.c. is 5.6 mM at 0.01 M NaCl or about 3.1 mM at 0.03 M NaCl. The lower c.m.c. observed at higher salt concentration results from a reduction in repulsive forces among the ionic head groups on the surface of micelles made up of ionic surfactants. As would be expected for any entropy-driven process, micelle formation is less favorable as the temperature is lowered. [Pg.464]

Synergism in mixed micelle formation. Synergism in this respect is present when the critical micelle concentration of any mixture is lower than that of either pure surfactant. This is illustrated in Figure 2. [Pg.152]

Corrin, M. L Klevens, H. B and Harkins, D. (1946). The determination of critical concentrations for the formation of soap micelles by the spectral behavior of pinacyanol chloride. J. Chem. Phys., 14,480-6. [Pg.276]

Critical micelle concentration in aqueous solutions was determined by fluorescence using pyrene as a probe. The driving force for micelle formation is the strong hydro-phobic interactions between [(R)-3-hydroxybutyrate] block. It was previously determined by this group that terpolymers with longer PHB blocks have much lower critical micelle concentrations because of PHB block aggregation in aqueous solution. Testing results are provided in Table 2. [Pg.457]

The break in curve 3 in Figure 7.14 is characteristic of this type of plot for soluble amphipathic molecules. Note that it appears in the experimental curves of Figure 7.15 also. The break is understood to indicate the threshold of micelle formation (see Chapter 1, Section 1.3a), known as the critical micelle concentration (see Chapter 8). We do not discuss this phenomenon any further since the next chapter is devoted entirely to micelles and related structures. [Pg.330]

Also, it is necessary to write down the expression for the free energy Fout of the outer solution (cf. Sect. 2.1.2). We will assume that the concentration of surfactant molecules Co in the outer solution is lower than the critical concentration of micelle formation. Then,... [Pg.146]

In spite of the fact that the concentration of surfactants in the outer solution is assumed to be smaller than the critical micelle concentration, inside the network, micelles are supposed to be formed. The reason for this assumption is, first of all, intensive adsorption of surfactants on the network as a result of the ion exchange reaction. Moreover, in Refs. [38, 39], it was shown that critical concentration of micelles formation c c" within a polyelectrolyte network is much less than that in the solution of surfactant c° . Indeed, when a micelle is formed in solution immobilization of counter ions of surfactant molecules takes place, because these counter ions tend to neutralize the charge of micelles (see Fig. 13), whereas there is no immobilization of counter ions when the micelles are formed in the network the charge of micelles is neutralized by initially immobilized network charges which do not contribute to the translational entropy (Fig. 13). [Pg.146]

When Co grows, the network volume slightly decreases and the concentration of surfactant q within the network increases. When cjj, exceeds a critical concentration of micelle formation (at this point cq = c, see Figs.14,15), the network collapses because the surfactant molecules aggregated in micelles cease to impose osmotic pressure which causes additional expansion of the network. At relatively small values of the ratio Vf/V, the collapse is continuous (Figs. 14, 15), so that the number of surfactant molecules in micelles increases from zero starting at the concentration c. However, when the ratio Vf/V is sufficiently large, a discrete first-order phase transition takes place. [Pg.148]


See other pages where Micelle formation critical concentration is mentioned: [Pg.696]    [Pg.480]    [Pg.126]    [Pg.81]    [Pg.176]    [Pg.268]    [Pg.119]    [Pg.182]    [Pg.199]    [Pg.107]    [Pg.184]    [Pg.445]    [Pg.1043]    [Pg.1121]    [Pg.1080]    [Pg.145]    [Pg.91]    [Pg.41]    [Pg.277]    [Pg.72]    [Pg.240]    [Pg.311]    [Pg.232]    [Pg.11]    [Pg.144]   
See also in sourсe #XX -- [ Pg.1119 ]




SEARCH



Critical concentration

Critical micell concentration

Critical micelle concentration

Critical micelle concentration micellization

Critical micelle formation

Critical micellization concentrations

Micelle Formation and Critical Micellar Concentration (CMC) of Bile Salts

Micelle concentration

Micelle, formation

Micelles critical micelle concentration

© 2024 chempedia.info