Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelle counterions

Figure 1 Typical cross-sectional schematic representing the classical view of an aqueous micelle. Counterions are not shown. (From Ref. 2 with permission.)... Figure 1 Typical cross-sectional schematic representing the classical view of an aqueous micelle. Counterions are not shown. (From Ref. 2 with permission.)...
Organic molecules are solubilized by the organic constituents of a micelle. In small micelles the molecules lie close to the interface, while in large microemulsions considerable penetration into the core is observed (1.). Inorganic materials are quite polar and have little interaction with the organic components of the micelle. However, the micelle counterions,... [Pg.333]

The same thermodynamic quantities needed for mixed micelle formation (already discussed) are also needed for mixed admicelle formation. Luckily, the monomer-admicelle equilibrium data can be fairly easily and unambiguously obtained (e.g., see Chapter 15). This should be combined with calorimetric data for a more complete thermodynamic picture of the mixed admicelle. As with micelles, counterion bindings on mixed admicelles also need to be obtained in order to account for electrostatic forces properly. Only one study has measured counterion binding on single-component admicelles (3 .), with none reported for mixed admicelles. [Pg.332]

We should note, however, that incorporation of a substrate into a micelle will accelerate its reaction with a micelle counterion only if the substrate is bound at the micellar surface, since ionic reagents cannot, apparently, penetrate into the micellar core. Thus, the hydroxyl ion-catalyzed hydrolysis of long-chain fatty acid esters of 3-nitro-4-hydroxybenzenesulfonic acid was inhibited by incorporation into micelles no matter whether these were uncharged, anionic, or cationic (68). [Pg.364]

In the acidic route (with pH < 2), both kinetic and thermodynamic controlling factors need to be considered. First, the acid catalysis speeds up the hydrolysis of silicon alkoxides. Second, the silica species in solution are positively charged as =SiOH2 (denoted as I+). Finally, the siloxane bond condensation rate is kinetically promoted near the micelle surface. The surfactant (S+)-silica interaction in S+X 11 is mediated by the counterion X-. The micelle-counterion interaction is in thermodynamic equilibrium. Thus the factors involved in determining the total rate of nanostructure formation are the counterion adsorption equilibrium of X on the micellar surface, surface-enhanced concentration of I+, and proton-catalysed silica condensation near the micellar surface. From consideration of the surfactant, the surfactants first form micelles as a combination of the S+X assemblies, which then form a liquid crystal with molecular silicate species, and finally the mesoporous material is formed through inorganic polymerization and condensation of the silicate species. In the S+X I+ model, the surfactant-to-counteranion... [Pg.476]

It is hard to overstate the observation that the admicelle has properties similar to a micelle. Counterion binding on the admicelle is nearly identical to that on the micelle ... [Pg.1470]

Equation (21) describes a highly idealized model for the association of nonionic surfactant molecules or ions. The simple mass action model assumes monodispersity of micelles. Counterions of surfactant ions are not included. In reality, large numbers of counterions are associated with micelles of anionic or cationic surfactants. Hence, if the surfactant dissociates into ions, the counterion and the degree of dissociation have to be considered [24) ... [Pg.222]

Surface active electrolytes produce charged micelles whose effective charge can be measured by electrophoretic mobility [117,156]. The net charge is lower than the degree of aggregation, however, since some of the counterions remain associated with the micelle, presumably as part of a Stem layer (see Section V-3) [157]. Combination of self-diffusion with electrophoretic mobility measurements indicates that a typical micelle of a univalent surfactant contains about 1(X) monomer units and carries a net charge of 50-70. Additional colloidal characterization techniques are applicable to micelles such as ultrafiltration [158]. [Pg.481]

The concentration of free surfactant, counterions, and micelles as a function of overall surfactant concentration is shown in Fig. XIII-13. Above the CMC, the concentration of free surfactant is essentially constant while the counterion concentration increases and... [Pg.481]

Micellization is a second-order or continuous type phase transition. Therefore, one observes continuous changes over the course of micelle fonnation. Many experimental teclmiques are particularly well suited for examining properties of micelles and micellar solutions. Important micellar properties include micelle size and aggregation number, self-diffusion coefficient, molecular packing of surfactant in the micelle, extent of surfactant ionization and counterion binding affinity, micelle collision rates, and many others. [Pg.2581]

It turned out that the dodecylsulfate surfactants Co(DS)i Ni(DS)2, Cu(DS)2 and Zn(DS)2 containing catalytically active counterions are extremely potent catalysts for the Diels-Alder reaction between 5.1 and 5.2 (see Scheme 5.1). The physical properties of these micelles have been described in the literature and a small number of catalytic studies have been reported. The influence of Cu(DS)2 micelles on the kinetics of quenching of a photoexcited species has been investigated. Interestingly, Kobayashi recently employed surfactants in scandium triflate catalysed aldol reactions". Robinson et al. have demonshuted that the interaction between metal ions and ligand at the surface of dodecylsulfate micelles can be extremely efficient. ... [Pg.139]

Further evidence for an increased efficiency of complexation in the presence of micellar aggregates with bivalent metal counterions is presented in Table 5.4. The apparent rate constants of the reaction of 5.1c with 5.2 in the presence of micelles of Co(DS)2, Ni(DS)2, Cu(DS)2 and Zn(DS)2 are compared to the rate constants for the corresponding bivalent metal ion - dienophile complexes in the absence of micelles. The latter data are not dependent on the efficiency of the formation of the catalyst - dienophile complex whereas possible incomplete binding will certainly be reflected in the former. The good correlations between 1 and and the absence of a correlation between and... [Pg.140]

Calculations usirig this value afford a partition coefficient for 5.2 of 96 and a micellar second-order rate constant of 0.21 M" s" . This partition coefficient is higher than the corresponding values for SDS micelles and CTAB micelles given in Table 5.2. This trend is in agreement with literature data, that indicate that Cu(DS)2 micelles are able to solubilize 1.5 times as much benzene as SDS micelles . Most likely this enhanced solubilisation is a result of the higher counterion binding of Cu(DS)2... [Pg.144]

Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ... Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ...
Figure 20 shows the plot of the surface tension vs. the logarithm of the concentration (or-lg c-isotherms) of sodium alkanesulfonates C,0-C15 at 45°C. In accordance with the general behavior of surfactants, the interfacial activity increases with growing chain length. The critical micelle concentration (cM) is shifted to lower concentration values. The typical surface tension at cM is between 38 and 33 mN/m. The ammonium alkanesulfonates show similar behavior, though their solubility is much better. The impact of the counterions is twofold First, a more polarizable counterion lowers the cM value (Fig. 21), while the aggregation number of the micelles rises. Second, polarizable and hydrophobic counterions, such as n-propyl- or isopropylammonium and n-butylammonium ions, enhance the interfacial activity as well (Fig. 22). Hydrophilic counterions such as 2-hydroxyethylammonium have the opposite effect. Table 14 summarizes some data for the dodecane 1-sulfonates. Figure 20 shows the plot of the surface tension vs. the logarithm of the concentration (or-lg c-isotherms) of sodium alkanesulfonates C,0-C15 at 45°C. In accordance with the general behavior of surfactants, the interfacial activity increases with growing chain length. The critical micelle concentration (cM) is shifted to lower concentration values. The typical surface tension at cM is between 38 and 33 mN/m. The ammonium alkanesulfonates show similar behavior, though their solubility is much better. The impact of the counterions is twofold First, a more polarizable counterion lowers the cM value (Fig. 21), while the aggregation number of the micelles rises. Second, polarizable and hydrophobic counterions, such as n-propyl- or isopropylammonium and n-butylammonium ions, enhance the interfacial activity as well (Fig. 22). Hydrophilic counterions such as 2-hydroxyethylammonium have the opposite effect. Table 14 summarizes some data for the dodecane 1-sulfonates.
Shedlovsky et al. studied mixtures of sodium decyl, dodecyl, and tetradecyl sulfates by electromotive force measurements and determined the extent of the dissociation of the sodium counterions by the micelles. From the data obtained strong interaction below the CMC was found for all of the mixtures except those containing more than 25 mol % of sodium decyl sulfate [122]. Commercial alcohol sulfates are mixtures of homologs with different hydrocarbon chains. It has been demonstrated [123] that the CMC of such products is lower than that expected by calculation from the linear relationship between log CMC and the number of carbon atoms of the alcohol as stated in Eq. (11). These results are shown in Fig. 9. [Pg.252]

Mechanisms of micellar reactions have been studied by a kinetic study of the state of the proton at the surface of dodecyl sulfate micelles [191]. Surface diffusion constants of Ni(II) on a sodium dodecyl sulfate micelle were studied by electron spin resonance (ESR). The lateral diffusion constant of Ni(II) was found to be three orders of magnitude less than that in ordinary aqueous solutions [192]. Migration and self-diffusion coefficients of divalent counterions in micellar solutions containing monovalent counterions were studied for solutions of Be2+ in lithium dodecyl sulfate and for solutions of Ca2+ in sodium dodecyl sulfate [193]. The structural disposition of the porphyrin complex and the conformation of the surfactant molecules inside the micellar cavity was studied by NMR on aqueous sodium dodecyl sulfate micelles [194]. [Pg.275]

Fujiwara et al. used the CMC values of sodium and calcium salts to calculate the energetic parameters of the micellization [61]. The cohesive energy change in micelle formation of the a-sulfonated fatty acid methyl esters, calculated from the dependency of the CMC on the numbers of C atoms, is equivalent to that of typical ionic surfactants (Na ester sulfonates, 1.1 kT Ca ester sulfonates, 0.93 kT Na dodecyl sulfate, 1.1 kT). The degree of dissociation for the counterions bound to the micelle can be calculated from the dependency of the CMC on the concentration of the counterions. The values of the ester sulfonates are also in the same range as for other typical ionic surfactants (Na ester sulfonates, 0.61 Ca ester sulfonates, 0.70 Na dodecyl sulfate, 0.66). [Pg.474]

The catalytic activity of micelles bearing catalytically active metal counterions (Lewis acid-surfactant combined catalysts, LASCs) on Diels-Alder reactions was recently investigated [72a, 76]. [Pg.176]

Highly monodisperse reversed micelles are formed by sodium bis(2-ethylhexyl) sul-fosuccinate (AOT) dissolved in hydrocarbons that are in equilibrium with monomers whose concentration (cmc) is 4 X 10 M, have a mean aggregation number of about 23, a radius of 15 A, exchange monomers with the bulk in a time scale of 10 s, and dissolve completely in a time scale of 10 s [1,2,4,14], Other very interesting surfactants able to form reversed micelles in a variety of apolar solvents have been derived from this salt by simple replacing the sodium counterion with many other cations [15,16],... [Pg.475]

In contrast, thermodynamic as well as spectroscopic properties of core water in AOT-reversed micelles are similar to those of pure water. Together with electrostatic considerations, this suggests that the penetration of counterions in the micellar core is negligible and that a relatively small number of water molecules are able to reconstruct the typical extended H-bonded structure of bulk water. [Pg.482]

In the case of Kryptofix 221D, a cryptand able to complex the alkali metal cations [141-143], it has been observed that it is solubilized mainly in the palisade layer of the AOT-reversed micelles. And from an analysis of the enthalpy of transfer of this solubilizate from the organic to the micellar phase it has been established that the driving force of the solubilization is the complexation of the sodium counterion. In addition, the enthalpy... [Pg.486]


See other pages where Micelle counterions is mentioned: [Pg.336]    [Pg.23]    [Pg.365]    [Pg.430]    [Pg.170]    [Pg.310]    [Pg.312]    [Pg.313]    [Pg.371]    [Pg.298]    [Pg.336]    [Pg.23]    [Pg.365]    [Pg.430]    [Pg.170]    [Pg.310]    [Pg.312]    [Pg.313]    [Pg.371]    [Pg.298]    [Pg.242]    [Pg.415]    [Pg.2580]    [Pg.2900]    [Pg.127]    [Pg.131]    [Pg.148]    [Pg.150]    [Pg.156]    [Pg.169]    [Pg.178]    [Pg.45]    [Pg.186]    [Pg.474]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Counterion

Counterion binding mixed micelles

Counterion binding with ionic micelles

Counterions

Counterions binding to micelle

Critical micelle concentration counterion

Micelles counterion binding

Micelles reactive counterion

© 2024 chempedia.info