Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium dodecyl sulfate micelles

Fig. 32. Model of the standard ionic micelle (sodium dodecyl sulfate SDS). (Reprinted with kind permission from [381]. Copyright 1985 Steinkopff Verlag, Darmstadt)... Fig. 32. Model of the standard ionic micelle (sodium dodecyl sulfate SDS). (Reprinted with kind permission from [381]. Copyright 1985 Steinkopff Verlag, Darmstadt)...
For the investigation of molecular recognition in micelles, adenine derivatives and positively charged (thyminylalkyl)ammonium salts such as shown in Figure 30 were prepared, which were solubilized in sodium dodecyl sulfate (SDS) solutions. Nmr studies have shown that binding occurs in a 1 1 molar ratio in the interior of the micelles as illustrated in Figure 30 (192). [Pg.192]

Sodium dodecyl sulfate micelle 71,72,77,79 Spin label 139 Starch 100, 104 —, crosslinked 106 —, graft polymers 105, 107, 125, 127 Styrene 160—162 Styrene-divinylbenzene resins 167 Styrenesulfonic acid, copolymers 74—76 Surface area 147... [Pg.181]

If the coupling component is not ionic, however, more dramatic effects occur, as found by Hashida et al. (1979) and by Tentorio et al. (1985). Hashida used N,N-bis(2-hydroxyethyl)aniline, while Tentorio and coworkers took 1-naphthylamine and l-amino-2-methylnaphthalene as coupling components. With cationic arenediazo-nium salts and addition of sodium dodecyl sulfate (SDS), rate increases up to 1100-fold were measured in cases where the surfactant concentration was higher than the critical micelle concentration (cmc). Under the same conditions the reaction... [Pg.376]

The heats of dilution of sodium dodecyl sulfate in 0.0001 M NaCl and 0.145 M NaCl solutions have been determined in a study of the thermodynamics of the reaction with cetylpyridinium chloride. The heat of dilution includes the heat of dilution of the monomer, the heat of micellization, and the heat of dilution of the micelle [71]. [Pg.236]

The curve shown in Fig. 6 for sodium dodecyl sulfate is characteristic of ionic surfactants, which present a discontinuous and sharp increase of solubility at a particular temperature [80]. This temperature is known as the Krafft temperature. The Krafft temperature is defined by ISO as the temperature [in practice, a narrow range of temperatures] at which the solubility of ionic surface active agents rises sharply. At this temperature the solubility becomes equal to the critical micelle concentration (cmc). The curve of solubility vs. temperature intersects with the curve of the CMC vs. temperature at the Krafft temperature. [Pg.242]

The logarithm of the micellar molecular weight (M) and consequently the aggregation number of sodium dodecyl sulfate at 25°C in aqueous sodium chloride solutions is linearly related to the logarithm of the CMC plus the concentration of salt (Cs), both expressed in molar units, through two equations [116]. Below 0.45 M NaCl micelles are spherical or globular, and Eq. (18) applies ... [Pg.260]

The conductivity of sodium dodecyl sulfate in aqueous solution and in sodium chloride solutions was studied by Williams et al. [98] to determine the CMC. Goddard and Benson [146] studied the electrical conductivity of aqueous solutions of sodium octyl, decyl, and dodecyl sulfates over concentration ranges about the respective CMC and at temperatures from 10°C to 55°C. Figure 14 shows the results obtained by Goddard and Benson for the specific conductivity of sodium dodecyl sulfate and Table 25 shows the coefficients a and p of the linear equation of the specific conductivity, in mho/cm, vs. the molality of the solution at 25°C. Micellization parameters have been studied in detail from conductivity data in a recent work of Shanks and Franses [147]. [Pg.265]

The conformation of [34-65] bacterioopsin polypeptide incorporated into perdeuterated sodium dodecyl sulfate micelles in the presence of trifluoroethanol was investigated by nuclear magnetic resonance (NMR) [184],... [Pg.274]

Sodium dodecyl sulfate and hydrogen dodecyl sulfate have been used as catalysts in the denitrosation iV-nitroso-iV-methyl-p-toluenesulfonamide [138]. The kinetics of condensation of benzidine and p-anisidine with p-dimethylamino-benzaldehyde was studied by spectrophotometry in the presence of micelles of sodium dodecyl sulfate, with the result that the surfactant increases the rate of reaction [188]. The kinetics of reversible complexation of Ni(II) and Fe(III) with oxalatopentaaminecobalt(III) has been investigated in aqueous micellar medium of sodium dodecyl sulfate. The reaction occurs exclusively on the micellar surface [189]. Vitamin E reacts rapidly with the peroxidized linoleic acid present in linoleic acid in micellar sodium dodecyl sulfate solutions, whereas no significant reaction occurs in ethanol solution [190]. [Pg.275]

Mechanisms of micellar reactions have been studied by a kinetic study of the state of the proton at the surface of dodecyl sulfate micelles [191]. Surface diffusion constants of Ni(II) on a sodium dodecyl sulfate micelle were studied by electron spin resonance (ESR). The lateral diffusion constant of Ni(II) was found to be three orders of magnitude less than that in ordinary aqueous solutions [192]. Migration and self-diffusion coefficients of divalent counterions in micellar solutions containing monovalent counterions were studied for solutions of Be2+ in lithium dodecyl sulfate and for solutions of Ca2+ in sodium dodecyl sulfate [193]. The structural disposition of the porphyrin complex and the conformation of the surfactant molecules inside the micellar cavity was studied by NMR on aqueous sodium dodecyl sulfate micelles [194]. [Pg.275]

Increased removal of phenanthrene from soil columns spiked with the rhamnolipid mixture synthesized by Pseudomonas aeruginosa UG2 has been demonstrated, and shown to depend both on the increased desorption of the substrate and on partitioning into micelles (Noordman et al. 1998). However, the addition of the biosurfactant from the same strain of Pseudomonas aeruginosa UG2 or of sodium dodecyl sulfate had no effect on the rate of biodegradation of anthracene and phenanthrene from a chronically contaminated soil. [Pg.650]

We may contrast this behavior to that found for AOT. As shown in Figure 1, the chromatograms for AOT exhibit sharp fronts and somewhat diffuse tails, intermediate in shape between the symmetrical peaks typical of conventional solutes and the highly asymmetric chromatograms obtained for sodium dodecyl sulfate micelles in water (15). In addition, the concentration dependence of Mp" for AOT is gradual, not abrupt as for lecithin. These differences may be attributed to the lability of the AOT micelles which makes the observed retention time quite sensitive to the initial concentration (12) and leads to broadened chromatograms. [Pg.236]

Another relatively new lipophilicity scale proposed for use in ADME studies is based on MEKC [106]. A further variant is called BMC and uses mobile phases of Brij35 [polyoxyethylene(23)lauryl ether] [129]. Similarly, the retention factors of 16 P-blockers obtained with micellar chromatography with sodium dodecyl sulfate as micelle-forming agent correlates well with permeability coefficients in Caco-2 monolayers and apparent permeability coefficients in rat intestinal segments [130]. [Pg.39]

MEKC is a CE mode based on the partitioning of compounds between an aqueous and a micellar phase. This analytical technique combines CE as well as LC features and enables the separation of neutral compounds. The buffer solution consists of an aqueous solution containing micelles as a pseudo-stationary phase. The composition and nature of the pseudo-stationary phase can be adjusted but sodium dodecyl sulfate (SDS) remains the most widely used surfactant. [Pg.348]

A., Testa, B. The relative partitioning of neutral and ionised compounds in sodium dodecyl sulfate micelles measured by micellar electrokinetic capillary chromatography. Eur. J. Pharm. Sci. 2002, 75, 225-234. [Pg.354]

Recently, the newly developed time-resolved quasielastic laser scattering (QELS) has been applied to follow the changes in the surface tension of the nonpolarized water nitrobenzene interface upon the injection of cetyltrimethylammonium bromide [34] and sodium dodecyl sulfate [35] around or beyond their critical micelle concentrations. As a matter of fact, the method is based on the determination of the frequency of the thermally excited capillary waves at liquid-liquid interfaces. Since the capillary wave frequency is a function of the surface tension, and the change in the surface tension reflects the ion surface concentration, the QELS method allows us to observe the dynamic changes of the ITIES, such as the formation of monolayers of various surfactants [34]. [Pg.426]

Oshima et al. explored a cationic rhodium-catalyzed intramolecular [4+2] annulation of l,3-dien-8-ynes in water in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant.132 When the substrate l,3-dien-8-yne was a terminal alkyne, the reaction provided an inter-molecular [2+2+2] product (Eq. 4.68). In water, a reactive cationic rhodium species was formed by the dissociation of the Rh-Cl bond in the presence of SDS. The SDS forms negatively charged micelles, which would concentrate the cationic rhodium species (Scheme 4.15). [Pg.137]

Shamsipur and Jalali described a simple and accurate pH metric method for the determination of two sparingly soluble (in water) antifungal agents miconazole and ketoconazole in micellar media [17]. Cetyltrimethylammonium bromide and sodium dodecyl sulfate micelles were used to solubilize these compounds. The application of this method to the analysis of pharmaceutical preparation of the related species gave satisfactory results. Simplicity and the absence of harmful organic solvents in this method make it possible to be used in the routine analyses. [Pg.38]

The rate of attack of water upon the tri-/>-anisylmethyl cation is unaffected by binding of this cation to anionic micelles of sodium dodecyl sulfate (SDS) (Bunton and Huang, 1972) and equilibrium constants for aldehyde hydration are only slightly reduced by binding to micelles (Albrizzio and Cordes, 1979). These observations are also consistent with substrate binding at a wet micellar surface rather than in the interior of the micelle. [Pg.247]

The catalytic activities of Cu(II), Co(II) and Mn(II) are considerably enhanced by sodium dodecyl sulfate (SDS) in the autoxidation of H2DTBC (51). The maximum catalytic activity was found in the CMC region. It was assumed that the micelles incorporate the catalysts and the short metal-metal distances increase the activity in accordance with the kinetic model discussed above. The concentration of the micelles increases at higher SDS concentrations. Thus, the concentrations of the catalyst and the substrate decrease in the micellar region and, as a consequence, the catalytic reaction becomes slower again. [Pg.418]

The monograph of levocarbastine has already been revised. The determination of the related substances is performed by means of MEKC using an electrolyte solution composed of sodium dodecyl sulfate as a micelle-forming agent in addition to hydroxypropyl-/ -cyclodextrin in a boric acid buffer of pH 9.0. Due to the very good specificity and robustness the method is able to baseline separate the nine specified and detectable impurities and the drug substance. It is easy to meet the system suitability (Rs>4) the resolution between levocarbastine and impurity D was found to be 6.4 and the content of related substances less than 0.5% (see Figure lA and B). [Pg.249]

In this modification, the ionic micelle has been considered as the charged phase, which has difficulties from the thermodynamic viewpoint. The precise measurement of the surface tension of aqueous sodium dodecyl sulfate solutions revealed the cotlnuous decrease of surface tension above the cmc and indicated that the charged phase separation model is not correct (27). ... [Pg.80]

In accordance with Equation 22, the values of log cmc + (Pll/-) log f+ are also plotted against log[X] in the same figure. Thelinear relations obtained now give slopes of -0.9 for sodium dodecyl sulfate and potassium dodecanoate, and -1.8 for disodium dodecyl phosphate, which are in fairly good agreement with the theoretical values of -1 and -2, respectively. The results obtained here suggest that the condensation of counter ions on the ionic micellar surface and the reduction of electrostatic energy play important roles in the ionic micelle formation. [Pg.83]

The effects of micelles of cetyltrimethylammonium bromide (CTABr), tetradecyl-trimethylammonium bromide (TTABr) and sodium dodecyl sulfate (SDS) on the rates of alkaline hydrolysis of securinine (223) were studied at a constant [HO ] (0.05 m). An increase in the total concentrations of CTABr, TTABr and SDS from 0.0 to 0.2 M causes a decrease in the observed pseudo-first-order rate constants (kobs) by factors of ca 2.5, 3, and 7, respectively. The observed data are explained in terms of pseudophase and pseudophase ion-exchange (PIE) models of micelles. Cationic micelles of CTABr speed attack of hydroxide ion upon coumarin (224) twofold owing to a concentration effect. ... [Pg.75]


See other pages where Sodium dodecyl sulfate micelles is mentioned: [Pg.273]    [Pg.273]    [Pg.45]    [Pg.411]    [Pg.198]    [Pg.71]    [Pg.257]    [Pg.260]    [Pg.263]    [Pg.539]    [Pg.226]    [Pg.744]    [Pg.245]    [Pg.248]    [Pg.410]    [Pg.776]    [Pg.777]    [Pg.399]    [Pg.335]    [Pg.200]    [Pg.184]    [Pg.154]    [Pg.163]    [Pg.614]    [Pg.35]    [Pg.73]    [Pg.145]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Sodium 1 dodecyl sulfate

Sodium sulfate

© 2024 chempedia.info