Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl/-butyl ether catalyst

Isobutyl alcohol [78-83-1] forms a substantial fraction of the butanols produced by higher alcohol synthesis over modified copper—zinc oxide-based catalysts. Conceivably, separation of this alcohol and dehydration affords an alternative route to isobutjiene [115-11 -7] for methyl /-butyl ether [1624-04-4] (MTBE) production. MTBE is a rapidly growing constituent of reformulated gasoline, but its growth is likely to be limited by available suppHes of isobutylene. Thus higher alcohol synthesis provides a process capable of supplying all of the raw materials required for manufacture of this key fuel oxygenate (24) (see Ethers). [Pg.165]

Methyl tert-Butylluther Methyl /-butyl ether (MTBE) is an increasingly important fuel additive. Platinum—tin and other PGM catalysts are used for the dehydrogenation of isobutane to isobutene, an intermediate step in MTBE manufacture. [Pg.173]

Butyl alcohol, obtained from hydration of Raffinate 1, can be dehydrated and subsequently refined to high purity, polymer-grade isobutylene (25). Alternatively, the isobutylene from alcohol dehydration can react with methanol in the presence of an acid catalyst to give methyl /-butyl ether (MTBE) gasoHne additive (see Ethers organic). [Pg.358]

CATOFIN [CATalytic OleFIN] A version of the Houdry process for converting mixtures of C3 - C5 saturated hydrocarbons into olefins by catalytic dehydrogenation. The catalyst is chromia on alumina in a fixed bed. Developed by Air Products Chemicals owned by United Catalysts, which makes the catalyst, and licensed through ABB Lummus Crest. Nineteen plants were operating worldwide in 1991. In 1994, seven units were used for converting isobutane to isobutylene for making methyl /-butyl ether for use as a gasoline additive. [Pg.55]

The synthesis of methyl /-butyl ether (MTBE) from isobutylene and methanol on TS-1 has been investigated. This reaction is catalyzed by acids and the industrial production is carried out with sulfonic acid resin catalysts. It has been reported that at 363-383 K the reaction proceeds in the presence of the acidic HZSM-5, but also on TS-1, which is much more weakly acidic. However, the characterization of the catalysts used is not completely satisfactory for instance, the IR spectra reported do not show the 960-cm 1 band that is always present in titanium-containing silicas. It is therefore possible that the materials with which the reaction has been studied are not pufe-phase TS-1. The catalytic activity for MTBE synthesis is, in any case, an interesting result, and further investigations with fully characterized catalysts are expected to provide a satisfactory interpretation of these results (Chang et al., 1992). [Pg.295]

A homogeneous catalytic process, developed by Oxirane, uses a molybdenum catalyst that epoxidizes propylene by transferring an oxygen atom from tertiary butyl hydroperoxide. This is shown by 8.28. The hydroperoxide is obtained by the auto-oxidation of isobutane. The co-product of propylene oxide, /-butanol, finds use as an antiknock gasoline additive. It is also used in the synthesis of methyl /-butyl ether, another important gasoline additive. The over-... [Pg.183]

Methyl -butyl ether production is the single largest consumer of butylenes. Liquid phase reaction of methanol with isobutylene in the presence of an acidic ion-exchange resin catalyst at temperatures of below 100°C and moderate pressures give excellent yields of this oxygenated gasoline additive (Eq. 19.54). [Pg.659]

The perfluorlnated Ion exchange resin also acts as a catalyst In the reaction between Isobutylene and methanol at SO C to yield methyl -butyl ether. The yield based on methanol Is 81.8Z (30). The recovered catalyst had no decrease In the number of acid sites. However, the same reaction with AMBERLYST IS gave a similar yield. 83.1%. but the mequlv. per gram dry catalyst decreased from 5.10 to 4.83. suggesting possible alkylation of the benzene rings In the polystyrene resin. AMBERLYST 15 Is used commercially as a catalyst to manufacture methyl -butyl ether. [Pg.52]

Dehydrogenation of Tertiary Amylenes, The staiting material here is a fiaction which is cut from catal57tic clacking of petroleum. Two of the tertiary amylene isomers, 2-methyl-l-butene and 2-methyl-2-butene, are recovered in high purity by formation of methyl tertiary butyl ether and cracking of this to produce primarily 2-methyl-2-butene. The amylenes are mixed with steam and dehydrogenated over a catalyst. The cmde isoprene can be purified by conventional or extractive distillation. [Pg.468]

Methyl tert-Butyl Ether (MTBE). Methyl tert-hutyi ether [1634-04-4] is made by the etherification of isobutylane with methanol, and there are six commercially proven technologies available. These technologies have been developed by Arco, IFF, CDTECH, Phillips, Snamprogetti, and Hbls (hcensed jointly with UOP). The catalyst in all cases is an acidic ion-exchange resin. The United States has been showing considerable interest in this product. Western Europe has been manufacturing it since 1973 (ANIC in Italy and Huls in Germany). Production of MTBE in Western Europe exceeded 600,000 tons in 1990. [Pg.373]

Methyl-te/t-butyl ether, a gasoline additive, is made from isobutene and methanol with distillation in a bed of acidic ion-exchange resin catalyst. The MTBE goes to the bottom with purity above 99 percent and unreacted materials overhead. [Pg.707]

To a solution of m-ethyl cinnamate (44, 352 mg, 85% pure, 1.70 mmol) and 4-phenylpyridine-A-oxide (85.5 mg, 29 mol%) in 1,2-dichloromethane (4.0 mL) was added catalyst 12 (38.0 mg, 3.5 mol%). The resulting brown solution was cooled to 4°C and then combined with 4.0 mL (8.9 mmol) of pre-cooled bleach solution. The two-phase mixture was stirred for 12 h at 4°C. The reaction mixture was diluted with methyl-t-butyl ether (40 mL) and the organic phase separated, washed with water (2 x 40 mL), brine (40 mL), and then dried over Na2S04. The drying agent was removed by filtration the mother liquors concentrated under reduce pressure. The resulting residue was purified by flash chromatography (silica gel, pet ether/ether = 87 13 v/v) to afford a fraction enriched in cis-epoxide (45, cis/trans . 96 4, 215 mg) and a fraction enriched in trans-epoxide cis/trans 13 87, 54 mg). The combined yield of pure epoxides was 83%. ee of the cis-epoxide was determined to be 92% and the trans-epoxide to be 65%. [Pg.42]

Heterogeneous catalytic systems offer the advantage that separation of the products from the catalyst is usually not a problem. The reacting fluid passes through a catalyst-filled reactor m the steady state, and the reaction products can be separated by standard methods. A recent innovation called catalytic distillation combines both the catalytic reaction and the separation process in the same vessel. This combination decreases the number of unit operations involved in a chemical process and has been used to make gasoline additives such as MTBE (methyl tertiai-y butyl ether). [Pg.226]

Reaction of 2-methylpropene with CH3OH in the presence of H2SO4 catalyst yields methyl tert-butyl ether, CP OQCHT, by a mechanism analogous to that of acid-catalyzed alkene hydration. Write the mechanism, using curved arrows for each step. [Pg.256]

Etherol A process for making oxygenated fuels (e.g., methyl f-butyl ether) from C4-C6 hydrocarbons by reacting them with methanol over an acid resin catalyst in a fixed bed reactor under mild conditions. Developed by BP with Erdoel Chemie and first used in a refinery at Vohburg, Germany, in 1986. Four units were operating and one was under construction in 1988. [Pg.102]

Cation-exchange resins are used as catalysts in the produdion of MTBE (methyl tertiary-butyl ether, 2-methoxy-2-methylpropane) and various other oxygenates and, lately, also in the dimerization of isobutene [30]. Other commercial applications of the cation-exchange resins indude dehydration of alcohols, alkylation of phenols, condensation readions, alkene hydration, purification of phenol, ester hydrolysis and other reactions [31]. The major producers of ion-exchange resins are Sybron Chemicals Incorporated [32] (Lewatit resins), Dow Chemical Company [33] (DOWEX resins), Purolite [28] (Purolite resins), and Rohm and Haas Company [27] (Amberlyst resins). [Pg.214]

Leaded fuels are now banned across Canada. In unleaded gasoline, simple organic compounds are added instead of lead compounds. These octane-enhancing compounds include methyl-t-butyl ether, t-butyl alcohol, methanol, and ethanol. Like lead catalysts. [Pg.102]

Methanol, CH3OH, the simplest alcohol, is made by reacting CO and H2 at high pressures over a catalyst. Methanol is a liquid at room temperature and is highly toxic. It is used to make formaldehyde, acetic acid, and other chemical intermediates. It is also used as a feedstock for MTBE (methyl tertiary butyl ether), a gasoline-blending component. [Pg.182]

Butane isomerization is usually carried out to have a source of isobutane which is often reacted with C3-C5 olefins to produce alkylate, a high octane blending gasoline [13]. An additional use for isobutane was to feed dehydrogenation units to make isobutene for methyl tert-butyl ether (MTBE) production, but since the phaseout of MTBE as an oxygenate additive for gasoline, this process has decHned in importance. Zeolitic catalysts have not yet been used industriaUy for this transformation though they have been heavily studied (Table 12.1). [Pg.356]

Acidic ion-exchange resins are in industrial large scale use, e. g. as catalysts for the addition of methanol to isobutylene to form methyl tert-butyl ether. F. Ancil-LOTTi, M.M. Mauri, E. Pescarollo,/. Catal. 1977, 46, 49-57 and references cited herein. [Pg.235]

Ketals of acetone and cyclohexanone with methyl, butyl, isopropyl and cyclohexyl alcohols are hydrogenolyzed to ethers and alcohols by catalytic hydrogenation. While platinum and ruthenium are inactive and palladium only partly active, 5% rhodium on alumina proves to be the best catalyst which, in the presence of a mineral acid, converts the ketals to ethers and alcohols in yields of 70-100% [933]. [Pg.130]

There has been an enormous technological interest in tertfa/j-butanol (tBA) dehydration during the past thirty years, first as a primary route to methyl te/f-butyl ether (MTBE) (1) and more recently for the production of isooctane and polyisobutylene (2). A number of commercializable processes have been developed for isobutylene manufacture (eq 1) in both the USA and Japan (3,4). These processes typically involve either vapor-phase tBA dehydration over a silica-alumina catalyst at 260-370°C, or liquid-phase processing utilizing either homogenous (sulfonic acid), or solid acid catalysis (e.g. acidic cationic resins). More recently, tBA dehydration has been examined using silica-supported heteropoly acids (5), montmorillonite clays (6), titanosilicates (7), as well as the use of compressed liquid water (8). [Pg.469]

In practice, short-chain alkanes and alkenes are normally used as feedstock for shape-selective catalytic formation of isooctanes at relatively low temperatures. Until the 1980s, lead alkyls (Section 18.1) were added to most automotive fuels to help suppress engine knock, but they have been phased out in North America because of the chronic toxicity of lead and lead compounds. The most commonly used nonlead antiknock additive is now methyl tert-butyl ether [MTBE CH30C(CH3)3], which is made by the reaction of methanol with 2-methylpropene, (CHs C—CH2 (see Section 7.4). The latter is obtained by catalytic cracking of petroleum fractions to give 1-butene, which is then shape-selectively isomerized on zeolitic catalysts. [Pg.140]


See other pages where Methyl/-butyl ether catalyst is mentioned: [Pg.174]    [Pg.193]    [Pg.482]    [Pg.102]    [Pg.204]    [Pg.235]    [Pg.179]    [Pg.369]    [Pg.363]    [Pg.401]    [Pg.17]    [Pg.253]    [Pg.123]    [Pg.785]    [Pg.69]    [Pg.479]    [Pg.95]    [Pg.769]    [Pg.65]    [Pg.918]    [Pg.51]    [Pg.151]   
See also in sourсe #XX -- [ Pg.205 , Pg.206 , Pg.207 ]




SEARCH



Butyl ether

Butyl methyl ether

Butyl-methyl

Catalysts methylation

Methyl catalyst

Methylations catalyst

© 2024 chempedia.info