Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method development, levels

Existing methods for monitoring the transport of gases were inadequate for studying aerosols. To solve the problem, qualitative and quantitative information were needed to determine the sources of pollutants and their net contribution to the total dry deposition at a given location. Eventually the methods developed in this study could be used to evaluate models that estimate the contributions of point sources of pollution to the level of pollution at designated locations. [Pg.7]

Hyphenated analytical methods usually give rise to iacreased confidence ia results, eaable the handling of more complex samples, improve detectioa limits, and minimi2e method development time. This approach normally results ia iacreased iastmmeatal complexity and cost, iacreased user sophisticatioa, and the need to handle enormous amounts of data. The analytical chemist must, however, remain cogni2ant of the need to use proper analytical procedures ia sample preparatioas to aid ia improved seasitivity and not rely solely on additional iastmmentation to iacrease detection levels. [Pg.395]

The specification development process is a data-driven activity that requires a validated analytical method. The levels of data needed include assay precision, replicate process results (process precision), and real-time stability profiles. A statistical analysis of these data is critical in setting a realistic specification. Most often, aggregation and fragmentation degradation mechanisms are common to protein and peptide therapeutics. Therefore, the SE-HPLC method provides a critical quality parameter that would need to be controlled by a specification limit. [Pg.535]

The epoxidation method developed by Noyori was subsequently applied to the direct formation of dicarboxylic acids from olefins [55], Cyclohexene was oxidized to adipic acid in 93% yield with the tungstate/ammonium bisulfate system and 4 equivalents of hydrogen peroxide. The selectivity problem associated with the Noyori method was circumvented to a certain degree by the improvements introduced by Jacobs and coworkers [56]. Additional amounts of (aminomethyl)phos-phonic acid and Na2W04 were introduced into the standard catalytic mixture, and the pH of the reaction media was adjusted to 4.2-5 with aqueous NaOH. These changes allowed for the formation of epoxides from ot-pinene, 1 -phenyl- 1-cyclohex-ene, and indene, with high levels of conversion and good selectivity (Scheme 6.3). [Pg.198]

The contemporary chromatograph used for analytical purposes is a very complex instrument that may operate at pressures up to 10,000 p.s.i.and provide flow rates that range from a few microliters per minute to 10 or 20 ml/minute. Solutes can be detected easily at concentration levels as low as lxlO-9 g/ml and a complete analysis can be carried out on a few micrograms of sample in a few minutes. The range of liquid chromatographs that is available extends from the relatively simple and inexpensive instrument, suitable for the majority of routine analyses, to the very elaborate and expensive machines that are more appropriate for analytical method development. [Pg.123]

A method has been reported for the quantification of five fungicides (shown in Figure 5.39) used to control post-harvest decay in citrus fruits to ensure that unacceptable levels of these are not present in fruit entering the food chain [26]. A survey of the literature showed that previously [27] APCl and electrospray ionization (ESI) had been compared for the analysis of ten pesticides, including two of the five of interest, i.e. carbendazim and thiabendazole, and since it was found that APCl was more sensitive for some of these and had direct flow rate compatibility with the HPLC system being used, APCl was chosen as the basis for method development. [Pg.246]

The variational theorem which has been initially proved in 1907 (24), before the birthday of the Quantum Mechanics, has given rise to a method widely employed in Qnantnm calculations. The finite-field method, developed by Cohen andRoothan (25), is coimected to this method. The Stark Hamiltonian —fi.S explicitly appears in the Fock monoelectronic operator. The polarizability is derived from the second derivative of the energy with respect to the electric field. The finite-field method has been developed at the SCF and Cl levels but the difficulty of such a method is the well known loss in the numerical precision in the limit of small or strong fields. The latter case poses several interconnected problems in the calculation of polarizability at a given order, n ... [Pg.271]

The identification and quantification of potentially cytotoxic carbonyl compounds (e.g. aldehydes such as pentanal, hexanal, traw-2-octenal and 4-hydroxy-/mAW-2-nonenal, and ketones such as propan- and hexan-2-ones) also serves as a useful marker of the oxidative deterioration of PUFAs in isolated biological samples and chemical model systems. One method developed utilizes HPLC coupled with spectrophotometric detection and involves precolumn derivatization of peroxidized PUFA-derived aldehydes and alternative carbonyl compounds with 2,4-DNPH followed by separation of the resulting chromophoric 2,4-dinitrophenylhydrazones on a reversed-phase column and spectrophotometric detection at a wavelength of378 nm. This method has a relatively high level of sensitivity, and has been successfully applied to the analysis of such products in rat hepatocytes and rat liver microsomal suspensions stimulated with carbon tetrachloride or ADP-iron complexes (Poli etui., 1985). [Pg.16]

Currently, nutrient analytical methods development often utilizes the method of standard additions as an intrinsic aspect of the development process. Essentially, the analyte to be measured exists in the matrix to which an identical known pure standard is added. The spiked and non-spiked matrix is extracted and analysed for the nutrient of interest. By spiking at increasing levels the researcher can establish, to some degree of certainty, the recovery and linearity of the standard additions. One can also evaluate data to determine reproducibility, precision, and accuracy. Unfortunately, the method of standard additions does not allow the evaluation of the method at nutrient concentrations less than 100 % of the endogenous level. [Pg.288]

Chase and Long (1997) propose that this conundrum can be eliminated by the use of Zero Reference Materials (ZRMs) in analytical methods development to fully evaluate the method. A ZRM is a product matrix that lacks those nutrient components that are to be assayed, i.e. a blank matrix. The use of a ZRM in method development can and will give a true indication as to how the method will perform as the spiked nutrient levels approach zero. For example, two products. Corn Starch (NIST RM 8432) and Microcrystalline Cellulose (NIST RM 8416), contain very low elemental concentrations and could conceivably serve as real sample blanks or ZRMs in some analytical procedures. [Pg.288]

However, there is no general requirement that enforcement methods need to monitor all metabolites of an active ingredient. The primary purpose of enforcement methods is to detect violations of good agricultural practice. For this purpose, residue levels found in samples from the market (so-called Market Basket Surveys) have to be compared with MRLs, which are derived from residue concentrations found in supervised trials. It is not necessary for this comparison to be based on the total pesticide residue. Most often the choice of a single compound (e.g., parent or primary metabolite) as a marker of the total pesticide residue is more feasible. Method development and the later method application are much easier in that case. Only for intake calculation purposes, e.g., when the daily intake of pesticide residues (calculated from the results... [Pg.97]

Some typical applications in SFE of polymer/additive analysis are illustrated below. Hunt et al. [333] found that supercritical extraction of DIOP and Topanol CA from ground PVC increased with temperature up to 90 °C at 45 MPa, then levelled off, presumably as solubility became the limiting factor. The extraction of DOP and DBP plasticisers from PVC by scC02 at 52 MPa increased from 50 to 80 °C, when extraction was almost complete in 25 min [336]. At 70 °C the amount extracted increased from 79 to 95 % for pressures from 22 to 60 MPa. SFE has the potential to shorten extraction times for traces (<20ppm) of additives (DBP and DOP) in flexible PVC formulations with similar or even better extraction efficiencies compared with traditional LSE techniques [384]. Marin et al. [336] have used off-line SFE-GC to determine the detection limits for DBP and DOP in flexible PVC. The method developed was compared with Soxhlet liquid extraction. At such low additive concentrations a maximum efficiency in the extractive process and an adequate separative system are needed to avoid interferences with other components that are present at high concentrations in the PVC formulations, such as DINP. Results obtained... [Pg.96]

In the clinical area, the largest share of analytical methods development and publication has centered on the determination of theophylline in various body fluids, since theophylline is used as a bronchodilator in asthma. Monitoring serum theophylline levels is much more helpful than monitoring dosage levels.44 Interest in the assay of other methylxanthines and their metabolites has been on the increase, as evidenced by the citations in the literature with a focus on the analysis of various xanthines and methylxanthines. [Pg.36]

These methods, and the most simple one with K — 1, were comparatively analyzed in a series of iPPs with crystallinity levels ranging from 0.50 to 0.80. The results are shown in Table 1. For this system, the corrections proposed by Natta and the most simple subtraction method (K — 1) gave similar results. The values obtained by the Hermans-Weidinger method are only slightly lower however, the method developed by Mo and Zhang yield consistently higher values. From this comparison, it appears that the most used simple method with K — 1 gives reasonable crystallinity values. [Pg.259]

In the study of a discoloured ancient wood from a Buddhist building constructed before or during the eighth century AD, concentrations show the same kind of evolution. Moreover, the levels of extractives in the ancient wood are comparable to those in recently cut wood, meaning that they do not undergo degradation in the ancient wood. The method developed on recently cut wood is then applicable to old discoloured wood. [Pg.445]

Within various pharmaceutical laboratories (industrial and academic), the mul-tinuclear technique of solid state NMR has primarily been applied to the study of polymorphism at the qualitative and quantitative levels. Although the technique ideally lends itself to the structure determination of drug compounds in the solid state, it is anticipated that in the future, solid state NMR will become routinely used for method development and problem solving activities in the analytical/materials science/physical pharmacy area of the pharmaceutical sciences. During the past few years, an increasing number of publications have emerged in which solid state NMR has become an invaluable technique. With the continuing development of solid state NMR pulse sequences and hardware improvements (increased sensitivity), solid state NMR will provide a wealth of information for the physical characterization of pharmaceutical solids. [Pg.123]

Gagnon [203] has described a rapid and sensitive AAS method developed from the work of Crisp et al. [200] for the determination of anionic detergents at the ppb level in natural waters. The method is based on determination by atomic absorption spectrometry using the bis(ethylene-diamine) copper (II) ion. The method is suitable for detergent concentrations up to 50 ig/l but it can be extended up to 15 mg/1. The limit of detection is 0.31 ig/1. [Pg.402]

The identification of unknown chemical compounds isolated in inert gas matrices is nowadays facilitated by comparison of the measured IR spectra with those computed at reliable levels of ab initio or density functional theory (DFT). Furthermore, the observed reactivity of matrix isolated species can in some instances be explained with the help of computed reaction energies and barriers for intramolecular rearrangements. Hence, electronic structure methods developed into a useful tool for the matrix isolation community. In this chapter, we will give an overview of the various theoretical methods and their limitations when employed in carbene chemistry. For a more detailed qualitative description of the merits and drawbacks of commonly used electronic structure methods, especially for open-shell systems, the reader is referred to the introductory guide of Bally and Borden.29... [Pg.162]


See other pages where Method development, levels is mentioned: [Pg.19]    [Pg.19]    [Pg.368]    [Pg.365]    [Pg.141]    [Pg.224]    [Pg.288]    [Pg.289]    [Pg.79]    [Pg.301]    [Pg.603]    [Pg.780]    [Pg.799]    [Pg.746]    [Pg.204]    [Pg.214]    [Pg.22]    [Pg.68]    [Pg.202]    [Pg.247]    [Pg.275]    [Pg.277]    [Pg.321]    [Pg.372]    [Pg.459]    [Pg.418]    [Pg.147]    [Pg.307]    [Pg.575]    [Pg.75]    [Pg.339]    [Pg.393]    [Pg.67]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Level method

Level selection, method development

Level selection, method development case studies

Method development

Method development, levels correlation with clinical

Method development, levels phases

Three-level screening designs method development

© 2024 chempedia.info