Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylate-butadiene-styrene adhesives

The homopolymers, which are formed from alkyl cyanoacrylate monomers, are inherently brittle. For applications which require a toughened adhesive, rubbers or elastomers can be added to improve toughness, without a substantial loss of adhesion. The rubbers and elastomers which have been used for toughening, include ethylene/acrylate copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, and methacrylate/butadiene/styrene (MBS) copolymers. In general, the toughening agents are incorporated into the adhesive at 5-20 wt.% of the monomer. [Pg.857]

Predesigned particles of impact modifiers are based on core-shell technology. Core is involved in impact modification and shell improves adhesion between PVC and impact modifier particles.Three major combinations are used methacrylate-butadiene-styrene, MBS, which has a core made out of butadiene-styrene copolymers and shell made out of methylmethacrylate-styrene copolymer, acrylic impact modifiers, AIM, which have a core made out of acrylic and shell from polymethylmethacrylate, and silicone-acrylic have multilayer structures with silicone-acrylic in the core. MBS has excellent compatibility with PVC, similar to ABS, which is used as an impact modifier of PVC, as well. In both cases of ABS and MBS, weather resistance is lacking, therefore they are used for indoor applications only. At the same time, MBS gives translucent to crystal clear products, whereas with AIM, only translucent products are possible. In order to improve optical properties of AIM, it has to be reformulated. For transparent products, the core is made out of acrylic-styrene copolymers. Comparing silicone and all acrylic impact modifiers, PVC containing silicone-based products has superior low temperature impact properties. The incorporation of silicone into an acrylic impact modifier provides excellent weatherability, and thermal stability. It has shown improved retention of impact after outdoor weathering in PVC. ... [Pg.62]

Uses Emollient emulsifier syn. lubricants bar soaps cosmetics rubber tires emulsifier for polymerization of SBR, ABS, methyl methacrylate-butadiene-styrene polymers lubricant, binder, defoamer for foods component of other food additives in food-pkg. adhesives in paper/paperboard in contact with aq./fatty foods defoamer in food-contact coatings and paper/paperboard food-contact textiles... [Pg.2079]

Plasticizers These are required to reduce the inherent brittleness of poly(alkyl-2-cyanoacrylates). This can be achieved by using non-copolymerizing plasticizers such as esters or higher alkyl cyanoacrylates, which copolymerize with the basic adhesive monomer. Toughness properties can be improved by the inclusion of rubber toughening materials such as ABS (acrylonitrile-butadiene-styrene) or MBS (methacrylate-butadiene-styrene) copolymers. Whichever approach is adopted, toughness is only achieved at the expense of reduced cure speed. [Pg.100]

Here, the inner core of the particle comprises a polymer of controlled modulus, for example, a silicone rubber or a methacrylic-butadiene-styrene terpolymer. The outer shell of the particle contains reactive species that are so designed to react with the adhesive matrix being used. For example, the styrene-based core contains 1 to 2% of an alkyl aryl sulphonate as its outer shell. [Pg.558]

Impact modifiers are added to many formulations. As the name implies, they impart toughness to the polymer article or film. Many of them are butadiene copolymers that disperse in the polymer matrix. One type - the so-called core shell modifiers - has a rubbery core surrounded by a harder acrylate layer. They have been compared to an egg soft on the inside and hard on the outside. The outer shell also has some adhesion to the matrix so that the modifier can be dispersed. Other impact modifiers include methacrylate-butadiene-styrene copolymers or EPDM, ethylene-propylene-diene monomer copolymers. Acrylonitrile-butadiene-styrene (ABS) and ethylene-vinyl acetate (EVA) are also used. [Pg.158]

The main use of methyl methacrylate (-80%) is the production of poly methyl methacrylate. Methyl methacrylate is also used for the production of the copolymer methyl methacrylate-butadiene-styrene, which is used as a modifier for PVC. Methacrylates polymerize easily to produce resins and polymers with excellent performance characteristics, including exceptional optical clarity, strength, and durability, especially in aggressive weather or corrosive environments. It can also be copolymerized with other monomers to form a broader range of products typically used for paints, coatings, and adhesives. [Pg.44]

Isocyanates can be added to solvent-borne CR adhesive solutions as a two-part adhesive system. This two-part adhesive system is less effective with rubber substrates containing high styrene resin and for butadiene-styrene block (thermoplastic rubber) copolymers. To improve the specific adhesion to those materials, addition of a poly-alpha-methylstyrene resin to solvent-borne CR adhesives is quite effective [76]. An alternative technique is to graft a methacrylate monomer into the polychloroprene [2]. [Pg.664]

Uses Copolymerized with methyl acrylate, methyl methacrylate, vinyl acetate, vinyl chloride, or 1,1-dichloroethylene to produce acrylic and modacrylic fibers and high-strength fibers ABS (acrylonitrile-butadiene-styrene) and acrylonitrile-styrene copolymers nitrile rubber cyano-ethylation of cotton synthetic soil block (acrylonitrile polymerized in wood pulp) manufacture of adhesives organic synthesis grain fumigant pesticide monomer for a semi-conductive polymer that can be used similar to inorganic oxide catalysts in dehydrogenation of tert-butyl alcohol to isobutylene and water pharmaceuticals antioxidants dyes and surfactants. [Pg.81]

Uses Emulsifier for emulsion polymerization of vinyl acetate, acrylates, methacrylates, styrene, butadiene for adhesives, paints, paper, textile, and industrial coatings Properties Liq. anionic 30% cone. [Pg.5]

Viscosity modifiers, usually referred to as thickeners, are used in varying concentrations throughout the range of sealants and adhesives. They span a diverse range of chemical structures. Some of the more commonly encountered thickeners include poly(alkyl methacrylates) - homo and/co-polymers poly(alkyl acrylates) - homo and/co-polymers polystyrene acry-lonitrile-butadiene-styrene co-polymers poly(vinyl acetate) fumaric or maleic acid-based polyesters. [Pg.42]

Latex is a stable dispersion of a polymeric material (Table 8.13) in an essentially aqueous medium. An emulsion is a stable dispersion of two or more immiscible liquids held in suspension by small percentages of substances called emulsifiers. In the adhesives industry, the terms latex and emulsion are sometimes used interchangeably. There are three types of latex natural, synthetic, and artificial. Namral latex refers to the material obtained primarily from the rubber tree. Synthetic latexes are aqueous dispersions of polymers obtained by emulsion polymerization. These include polymers of chloroprene, butadiene-styrene, butadiene-acrylonitrile, vinyl acetate, acrylate, methacrylate, vinyl chloride, styrene, and vinylidene chloride. Artificial latexes are made by dispersing solid polymers. These include dispersions of reclaimed rubber, butyl rubber, rosin, rosin derivatives, asphalt, coal tar, and a large number of synthetic resins derived from coal tar and petroleum. ... [Pg.177]

Uses Surfactant for emulsion polymerization of wide range of polymers incl. vinyl acetate, acrylates, butadiene, styrene and methacrylates food-pkg. adhesives Regulatory FDA 21CFR 175.105... [Pg.1359]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

NR, styrene-butadiene mbber (SBR), polybutadiene rubber, nitrile mbber, acrylic copolymer, ethylene-vinyl acetate (EVA) copolymer, and A-B-A type block copolymer with conjugated dienes have been used to prepare pressure-sensitive adhesives by EB radiation [116-126]. It is not necessary to heat up the sample to join the elastomeric joints. This has only been possible due to cross-linking procedure by EB irradiation [127]. Polyfunctional acrylates, tackifier resin, and other additives have also been used to improve adhesive properties. Sasaki et al. [128] have studied the EB radiation-curable pressure-sensitive adhesives from dimer acid-based polyester urethane diacrylate with various methacrylate monomers. Acrylamide has been polymerized in the intercalation space of montmorillonite using an EB. The polymerization condition has been studied using a statistical method. The product shows a good water adsorption and retention capacity [129]. [Pg.866]

Emulsion polymerization is the basis of many industrial processes, and the production volume of latex technologies is continually expanding—a consequence of the many environmental, economic, health, and safety benefits the process has over solvent-based processes. A wide range of products are synthesized by emulsion polymerization, including commodity polymers, such as polystyrene, poly(acrylates), poly (methyl methacrylate), neoprene or poly(chloroprene), poly(tetrafluoroethylene), and styrene-butadiene rubber (SBR). The applications include manufacture of coatings, paints, adhesives, synthetic leather, paper coatings, wet suits, natural rubber substitutes, supports for latex-based antibody diagnostic kits, etc. ... [Pg.863]


See other pages where Methacrylate-butadiene-styrene adhesives is mentioned: [Pg.317]    [Pg.530]    [Pg.401]    [Pg.4801]    [Pg.118]    [Pg.129]    [Pg.548]    [Pg.276]    [Pg.364]    [Pg.1241]    [Pg.73]    [Pg.497]    [Pg.622]    [Pg.4]    [Pg.287]    [Pg.588]    [Pg.265]    [Pg.362]    [Pg.233]    [Pg.284]    [Pg.67]    [Pg.556]    [Pg.530]    [Pg.84]    [Pg.480]   
See also in sourсe #XX -- [ Pg.857 ]

See also in sourсe #XX -- [ Pg.857 ]




SEARCH



Adhesive methacrylate

Butadiene methacrylate

Butadiene-styrene methacrylic

Methacrylate-butadiene-styrene

Methacrylic styrene

Styrene-butadiene

© 2024 chempedia.info