Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylate adhesives

Epoxy resin adhesive, methacrylate adhesive, polyurethane adhesive as reference to the applied adhesive basis (adhesive basic material). [Pg.11]

The use of hydroxyethyl (also hydroxypropyl) methacrylate as a monomer permits the introduction of reactive hydroxyl groups into the copolymers. This offers the possibility for subsequent cross-linking with an HO-reactive difunctional agent (diisocyanate, diepoxide, or melamine-formaldehyde resin). Hydroxyl groups promote adhesion to polar substrates. [Pg.1013]

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

Emulsion Polymerization. Emulsion polymerization is the most important industrial method for the preparation of acryhc polymers. The principal markets for aqueous dispersion polymers made by emulsion polymerization of acryhc esters are the paint, paper, adhesives, textile, floor pohsh, and leather industries, where they are used principally as coatings or binders. Copolymers of either ethyl acrylate or butyl acrylate with methyl methacrylate are most common. [Pg.168]

The cured polymers are hard, clear, and glassy thermoplastic resins with high tensile strengths. The polymers, because of their highly polar stmcture, exhibit excellent adhesion to a wide variety of substrate combinations. They tend to be somewhat britde and have only low to moderate impact and peel strengths. The addition of fillers such as poly (methyl methacrylate) (PMMA) reduces the brittleness somewhat. Newer formulations are now available that contain dissolved elastomeric materials of various types. These mbber-modifted products have been found to offer adhesive bonds of considerably improved toughness (3,4). [Pg.178]

Anaerobic stmctural adhesives are typically formulated from acryhc monomers such as methyl methacrylate [80-62-6] C Hg02, and methacrylic acid [79-41-4] (see Acrylic ester polymers). Very often, cross-linking agents such as dimethacrylates are also added. A peroxide, such as cumene... [Pg.233]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Hydroxyalkyl acrylates and polyols are acetoacetylated with diketene to give comonomers used in adhesives, polymers, and coatings, especially the new low solvent coatings, and for emulsion polymeri2ation. The most widely used compound is 2-acetoacetoxyethyl methacrylate (A ARM A) (152). [Pg.481]

The uniqueness of methyl methacrylate as a plastic component accounts for its industrial use in this capacity, and it far exceeds the combined volume of all of the other methacrylates. In addition to plastics, the various methacrylate polymers also find appHcation in sizable markets as diverse as lubricating oil additives, surface coatings (qv), impregnates, adhesives (qv), binders, sealers (see Sealants), and floor poHshes. It is impossible to segregate the total methacrylate polymer market because many of the polymers produced are copolymers with acrylates and other monomers. The total 1991 production capacity of methyl methacrylate in the United States was estimated at 585,000 t/yr. The worldwide production in 1991 was estimated at about 1,785,000 t/yr (3). [Pg.259]

AH-acryHc (100%) latex emulsions are commonly recognized as the most durable paints for exterior use. Exterior grades are usuaHy copolymers of methyl methacrylate with butyl acrylate or 2-ethyIhexyl acrylate (see Acrylic ester polymers). Interior grades are based on methyl methacrylate copolymerized with butyl acrylate or ethyl acrylate. AcryHc latex emulsions are not commonly used in interior flat paints because these paints typicaHy do not require the kind of performance characteristics that acryHcs offer. However, for interior semigloss or gloss paints, aH-acryHc polymers and acryHc copolymers are used almost exclusively due to their exceUent gloss potential, adhesion characteristics, as weU as block and print resistance. [Pg.540]

Small amounts of TAIC together with DAP have been used to cure unsaturated polyesters in glass-reinforced thermo sets (131). It has been used with polyfunctional methacrylate esters in anaerobic adhesives (132). TAIC and vinyl acetate are copolymerized in aqueous suspension, and vinyl alcohol copolymer gels are made from the products (133). Electron cure of poly(ethylene terephthalate) moldings containing TAIC improves heat resistance and transparency (134). [Pg.88]

Small concentrations of vinylcarboxyhc acids, eg, acryhc acid, methacrylic acid, or itaconic acid, are sometimes included to enhance adhesion of the polymer to the substrate. The abihty to crystalline and the extent of crystallization are reduced with increa sing concentration of the comonomers some commercial polymers do not crystalline. The most common lacquer resins are terpolymers of VDC—methyl methacrylate—acrylonitrile (162,163). The VDC level and the methyl methacrylate—acrylonitrile ratio are adjusted for the best balance of solubihty and permeabihty. These polymers exhibit a unique combination of high solubihty, low permeabihty, and rapid crystallization (164). [Pg.442]

Poly(ethyl methacrylate) (PEMA) yields truly compatible blends with poly(vinyl acetate) up to 20% PEMA concentration (133). Synergistic improvement in material properties was observed. Poly(ethylene oxide) forms compatible homogeneous blends with poly(vinyl acetate) (134). The T of the blends and the crystaUizabiUty of the PEO depend on the composition. The miscibility window of poly(vinyl acetate) and its copolymers with alkyl acrylates can be broadened through the incorporation of acryUc acid as a third component (135). A description of compatible and incompatible blends of poly(vinyl acetate) and other copolymers has been compiled (136). Blends of poly(vinyl acetate) copolymers with urethanes can provide improved heat resistance to the product providing reduced creep rates in adhesives used for vinyl laminating (137). [Pg.467]

Once a metal surface has been conditioned by one of the above methods, a coupling agent composed of a bifimctional acid—methacrylate similar to a dentin adhesive is appHed. This coupling material is usually suppHed as a solvent solution that is painted over the conditioned metal surface. The acidic functional group of the coupling molecule interacts with the metal oxide surface while the methacrylate functional group of the molecule copolymerizes with the resin cement or restorative material placed over it (266,267). [Pg.493]

Type AD-G is used in an entirely different sort of formulation. The polymer is designed for graft polymerisation with methyl methacrylate. Typically, equal amounts of AD-G and methyl methacrylate are dissolved together in toluene, and the reaction driven to completion with a free-radical catalyst, such as bensoyl peroxide. The graft polymer is usually mixed with an isocyanate just prior to use. It is not normally compounded with resin. The resulting adhesive has very good adhesion to plasticised vinyl, EVA sponge, thermoplastic mbber, and other difficult to bond substrates, and is of particular importance to the shoe industry (42,43). [Pg.547]

C. R. Cuervo and A. J. Maldonado, Solution Adhesives Based on Graft Polymers of Neoprene and Methyl Methacrylate, Du Pont Informal Bulletin, Wilmington, Del., Oct. 1984 K. Itoyama, M. Dohi, and K. Ichikawa, Nippon Setchaku Kyokaishi 20, 268 (1984). [Pg.550]

In addition to poly(methyl methacrylate) plastics and polyacrylonitrile fibres, acrylic polymers find widespread use. First introduced in 1946, acrylic rubbers have become established as important special purpose rubbers with a useful combination of oil and heat resistance. Acrylic paints have become widely accepted particularly in the car industry whilst very interesting reactive adhesives, including the well-known super-glues are also made from acrylic polymers. [Pg.399]

Today a very wide range of acrylic materials is available with a broad property spectrum. The word acrylic, often used as a noun as well as an adjective in everyday use, can mean quite different things to different people. In the plastics industry it is commonly taken to mean poly(methyl methacrylate) plastics, but the word has different meanings, to the fibre chemist and to those working in the paint and adhesives industries. Unless care is taken this may be a source of some confusion. [Pg.399]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

It may also be possible to crosslink the acrylic PSA with the help of multifunctional acrylates or methacrylates [87], These monomers can simply be copolymerized with the balance of the other monomers to form a covalently crosslinked network in one step. Since the resulting polymer is no longer soluble, this typ)e of crosslinking is typically limited to bulk reactions carried out as an adhesive coating directly on the article or in emulsion polymerizations where the crosslinked particles can be dried to a PSA film. [Pg.498]


See other pages where Methacrylate adhesives is mentioned: [Pg.546]    [Pg.273]    [Pg.546]    [Pg.273]    [Pg.13]    [Pg.83]    [Pg.441]    [Pg.132]    [Pg.197]    [Pg.259]    [Pg.265]    [Pg.42]    [Pg.87]    [Pg.255]    [Pg.255]    [Pg.270]    [Pg.310]    [Pg.312]    [Pg.348]    [Pg.353]    [Pg.358]    [Pg.422]    [Pg.475]    [Pg.494]    [Pg.539]    [Pg.396]    [Pg.419]    [Pg.76]    [Pg.45]    [Pg.101]    [Pg.405]    [Pg.412]   
See also in sourсe #XX -- [ Pg.18 , Pg.35 , Pg.41 , Pg.99 ]




SEARCH



Acrylic adhesives methacrylate synthesis

Adhesion promoters methyl methacrylate

Methacrylate-based adhesives

Methacrylate-butadiene-styrene adhesives

Methacrylic acid adhesive

Methyl methacrylate adhesive

© 2024 chempedia.info