Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylic-butadiene-styrene

In these equations I is the initiator and I- is the radical intermediate, M is a vinyl monomer, I—M- is an initial monomer radical, I—M M- is a propagating polymer radical, and and are polymer end groups that result from termination by disproportionation. Common vinyl monomers that can be homo-or copolymeri2ed by radical initiation include ethylene, butadiene, styrene, vinyl chloride, vinyl acetate, acrylic and methacrylic acid esters, acrylonitrile, A/-vinylirnida2ole, A/-vinyl-2-pyrrohdinone, and others (2). [Pg.219]

There is extensive Hterature on PC blends with ABS, and blends of PC with related materials such as SAN, methacrylate-butadiene—styrene (MBS) emulsion-made core-shell mbber modifiers (297—299), and other impact modifiers. One report reviews some of these approaches and compares PC blends based on emulsion vs bulk ABS (229). In PC—ABS blends, no additional compatihili er is used, because of the near-miscihility of the SAN matrix of ABS and PC. [Pg.421]

Synthetic. The main types of elastomeric polymers commercially available in latex form from emulsion polymerization are butadiene—styrene, butadiene—acrylonitrile, and chloroprene (neoprene). There are also a number of specialty latices that contain polymers that are basically variations of the above polymers, eg, those to which a third monomer has been added to provide a polymer that performs a specific function. The most important of these are products that contain either a basic, eg, vinylpyridine, or an acidic monomer, eg, methacrylic acid. These latices are specifically designed for tire cord solutioning, papercoating, and carpet back-sizing. [Pg.253]

MBS = methyl methacrylate—butadiene—styrene and MABS = methacrylate-acrylonitrile—butadiene—styrene. [Pg.503]

At one time butadiene-acrylonitrile copolymers (nitrile rubbers) were the most important impact modifiers. Today they have been largely replaced by acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-buta-diene-styrene (MBS) terpolymers, chlorinated polyethylene, EVA-PVC graft polymers and some poly acrylates. [Pg.341]

Besides the MBS materials, related terpolymers have been prepared. These include materials prepared by terpolymerising methyl methacrylate, acrylonitrile and styrene in the presence of polybutadiene (Toyolac, Hamano 500) methyl methacrylate, acrylonitrile and styrene in the presence of a butadiene-methyl methacrylate copolymer (XT Resin), and methylacrylate, styrene and acrylonitrile on to a butadiene-styrene copolymer. [Pg.449]

Isocyanates can be added to solvent-borne CR adhesive solutions as a two-part adhesive system. This two-part adhesive system is less effective with rubber substrates containing high styrene resin and for butadiene-styrene block (thermoplastic rubber) copolymers. To improve the specific adhesion to those materials, addition of a poly-alpha-methylstyrene resin to solvent-borne CR adhesives is quite effective [76]. An alternative technique is to graft a methacrylate monomer into the polychloroprene [2]. [Pg.664]

The homopolymers, which are formed from alkyl cyanoacrylate monomers, are inherently brittle. For applications which require a toughened adhesive, rubbers or elastomers can be added to improve toughness, without a substantial loss of adhesion. The rubbers and elastomers which have been used for toughening, include ethylene/acrylate copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, and methacrylate/butadiene/styrene (MBS) copolymers. In general, the toughening agents are incorporated into the adhesive at 5-20 wt.% of the monomer. [Pg.857]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

Methacrylate-butadiene-styrene polymers (MBS) and related materials chemically similar to ABS but often available in transparent form. [Pg.919]

SBR (Styrene Butadiene Rubber) ABS (Acrylonitrile Butadiene Styrene Polymethyl methacrylate PAN (Polyacrylonitrile)... [Pg.321]

Styrene acrylonitrile Styrene butadiene Styrene maleic anhydride Styrene methyl methacrylate Thermoplastic urethane, rigid... [Pg.330]

Dimensional stability Styrene-acrylonitrile, methacrylate-butadiene-styrene... [Pg.347]

Processability Styrene-acrylonitrile, methacrylate-butadiene-styrene, chlorinated polyethylene, PVC-ethyl acrylate, ethylene-vinyl acetate, chlorinated polyoxymethylenes (acetals)... [Pg.347]

There are various requirements for impact-modified PVC. The most demanding is for outdoor sidings and window frames, where lifetimes of 20 years are expected. Because butadiene polymers or copolymers (e.g., acrylonitrile/butadiene/styrene (ABS), methyl methacrylate/butadiene/styrene (MBS)) are susceptible to UV degradation these polymers are usually not employed instead acrylate polymers are used for these applications. [Pg.114]

Impact modifiers Polybutadiene rubber, methacrylate-butadiene-styrene terpolymers, acrylic rubber... [Pg.563]

SEM and transmission electron microscopy (TEM) are employed to examine materials for the presence and distribution of impact modifiers such as polybutadiene rubber in high impact polystyrene (HIPS) and methacrylate butadiene styrene terpolymer in PVC. Quantification is either by transmission IR spectroscopy against standards or nuclear magnetic resonance (NMR) spectroscopy. [Pg.588]

Several attempts have been made to superimpose creep and stress-relaxation data obtained at different temperatures on styrcne-butadiene-styrene block polymers. Shen and Kaelble (258) found that Williams-Landel-Ferry (WLF) (27) shift factors held around each of the glass transition temperatures of the polystyrene and the poly butadiene, but at intermediate temperatures a different type of shift factor had to be used to make a master curve. However, on very similar block polymers, Lim et ai. (25 )) found that a WLF shift factor held only below 15°C in the region between the glass transitions, and at higher temperatures an Arrhenius type of shift factor held. The reason for this difference in the shift factors is not known. Master curves have been made from creep and stress-relaxation data on partially miscible graft polymers of poly(ethyl acrylate) and poly(mcthyl methacrylate) (260). WLF shift factors held approximately, but the master curves covered 20 to 25 decades of time rather than the 10 to 15 decades for normal one-phase polymers. [Pg.118]

ABS Acrylonitrile Butadiene Styrene SAN Styrene Acrilonitrile PMMA Polymethyl Methacrylate... [Pg.77]

Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
MBS (methyl methacrylate-butadiene-styrene) graft copolymers are known as one of the most efficient non-reactive impact modifiers for PET and also poly(vinyl chloride) (PVC). MBS is used commercially as an effective impact modifier for PET recyclate [27], Typical MBS rubber particles contain an elastomeric core of... [Pg.511]

MBS (poly(methyl methacrylate)-g-poly(butadiene/styrene) graft copolymer) Paraloid EXL Rohm Haas... [Pg.512]

ISO 10366-1 2002 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 10366-2 2003 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties... [Pg.363]

Uses Copolymerized with methyl acrylate, methyl methacrylate, vinyl acetate, vinyl chloride, or 1,1-dichloroethylene to produce acrylic and modacrylic fibers and high-strength fibers ABS (acrylonitrile-butadiene-styrene) and acrylonitrile-styrene copolymers nitrile rubber cyano-ethylation of cotton synthetic soil block (acrylonitrile polymerized in wood pulp) manufacture of adhesives organic synthesis grain fumigant pesticide monomer for a semi-conductive polymer that can be used similar to inorganic oxide catalysts in dehydrogenation of tert-butyl alcohol to isobutylene and water pharmaceuticals antioxidants dyes and surfactants. [Pg.81]

Emulsion polymerization is used for 10-15% of global polymer production, including such industrially important polymers as poly(acrylonitrile-butadiene-styrene) (ABS), polystyrene, poly(methyl methacrylate), and poly (vinyl acetate) [196]. These are made from aqueous solutions with high concentrations of suspended solids. The important components have unsaturated carbon-carbon double bonds. Raman spectroscopy is well-suited to address these challenges, though the heterogeneity of the mixture sometimes presents challenges. New sample interfaces, such as WAI and transmission mode, that have shown promise in pharmaceutical suspensions are anticipated to help here also. [Pg.222]

Acrylonitrile-butadiene-styrene (ABS) copolymers Ethylene-methacrylic acid copolymers Styrene-butadiene rubber copolymers (SBR)... [Pg.136]

Impact modifiers improve the resistance of materials to stress. Most impact modifiers are elastomers such as ABS, BS, methacrylate-butadiene-styrene, acrylic, ethylene-vinyl acetate, and chlorinated PE. [Pg.492]

Butadiene Styrene Vinyl Acetate Vinyl Methyl Methyl Chloride Methacrylate Acrylate Acrylonitrile ... [Pg.492]

Penultimate effects have been observed for many comonomer pairs. Among these are the radical copolymerizations of styrene-fumaronitrile, styrene-diethyl fumarate, ethyl methacrylate-styrene, methyl methacrylate l-vinylpyridine, methyl acrylate-1,3-butadiene, methyl methacrylate-methyl acrylate, styrene-dimethyl itaconate, hexafluoroisobutylene-vinyl acetate, 2,4-dicyano-l-butene-isoprene, and other comonomer pairs [Barb, 1953 Brown and Fujimori, 1987 Buback et al., 2001 Burke et al., 1994a,b, 1995 Cowie et al., 1990 Davis et al., 1990 Fordyce and Ham, 1951 Fukuda et al., 2002 Guyot and Guillot, 1967 Hecht and Ojha, 1969 Hill et al., 1982, 1985 Ma et al., 2001 Motoc et al., 1978 Natansohn et al., 1978 Prementine and Tirrell, 1987 Rounsefell and Pittman, 1979 Van Der Meer et al., 1979 Wu et al., 1990 Yee et al., 2001 Zetterlund et al., 2002]. Although ionic copolymerizations have not been as extensively studied, penultimate effects have been found in some cases. Thus in the anionic polymerization of styrene t-vinylpyri-dine, 4-vinylpyridine adds faster to chains ending in 4-vinylpyridine if the penultimate unit is styrene [Lee et al., 1963]. [Pg.515]

MBS methyl methacrylate butadiene styrene copolymer blend... [Pg.35]

The effectiveness of methacrylate-grafted latex rubbers for HIPS was unexpected because of the poor miscibility properties of these type of polymers (5). The situation is different in the case of acrylonitrile-butadiene-styrene (ABS) types that are miscible with methacrylate-grafted latex rubbers. [Pg.270]


See other pages where Methacrylic-butadiene-styrene is mentioned: [Pg.57]    [Pg.57]    [Pg.625]    [Pg.191]    [Pg.542]    [Pg.945]    [Pg.541]    [Pg.331]    [Pg.203]    [Pg.227]    [Pg.426]    [Pg.894]    [Pg.404]    [Pg.356]    [Pg.530]    [Pg.23]   


SEARCH



Butadiene methacrylate

Elastomers methacrylate-butadiene styrene rubber

MBS [Methyl methacrylate-butadiene-styrene

MBS [Methyl methacrylate-butadiene-styrene copolymer

MBS, methacrylate-butadiene-styrene

Methacrylate acrylonitrile butadiene styrene copolymer

Methacrylate-butadiene-styrene

Methacrylate-butadiene-styrene

Methacrylate-butadiene-styrene adhesives

Methacrylate-butadiene-styrene polymer

Methacrylate-butadiene-styrene-modified

Methacrylate-butadiene-styrene-modified blends

Methacrylate/butadiene/styrene modifiers

Methacrylic acid copolymers, styrene-butadiene

Methacrylic styrene

Methacrylic-butadiene-styrene copolymer

Methyl methacrylate acrylonitrile butadiene styrene

Methyl methacrylate-butadiene-styrene

Methyl methacrylate-butadiene-styrene copolymer

Methyl methacrylate-butadiene-styrene resins

Methyl methacrylate-butadiene-styrene terpolymer

Styrene-butadiene

Styrenic plastics methacrylate acrylonitrile butadiene

© 2024 chempedia.info