Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multilayer structure

Figure 18. C(V) curves for a metal-Ba stearate semiconductor structure (multilayer thickness, 1000 A). Capacitance levels are indicated the max/min ratio depends on the parameters of the structure, and the absolute values of the capacitance depend of course on the area of the metal contact (a mercury probe). Different areas of the same sample were used to obtain the curves in the top and bottom figures.------------- an ideal, theoretical C(V) curve. Figure 18. C(V) curves for a metal-Ba stearate semiconductor structure (multilayer thickness, 1000 A). Capacitance levels are indicated the max/min ratio depends on the parameters of the structure, and the absolute values of the capacitance depend of course on the area of the metal contact (a mercury probe). Different areas of the same sample were used to obtain the curves in the top and bottom figures.------------- an ideal, theoretical C(V) curve.
Ni Thin Layer Catalysts for Making H2 COx-Free by Decomposition of Natural Gas in a Structured Multilayer Reactor... [Pg.633]

In all cases, the films were obtained by oxidative electropolymerization of the cited substituted complexes from organic or aqueous solutions. The mechanism of metalloporphyrin Him formation was suggested to be a radical-cation induced polymerization of the substituents on the periphery of the macrocycle. As it was reported for the case of polypyrrole-based materials ", cyclic voltammetry and UV-visible spectroscopy with optically transparent electrodes were extensively used to provide information on the polymeric films (electroactivity, photometric properties, chemical stability, conductivity, etc.). Based on the available data, it appears that the electrochemical polymerization of the substituted complexes leads to well-structured multilayer films. It also appears that the low conductivity of the formed films, combined with the cross-linking effects due to the steric hindrance induced by the macrocyclic Ugand, confers to these materials a certain number of limitations such as the limited continuous growth of the polymers due to the absence of electronic conductivity of the films. Indeed, the charge transport in many of these films acts only by electron-hopping process between porphyrin sites. [Pg.384]

The incorporation of metals in multilayer thin films significantly extends the scope of useful characteristics associated with these films. By employing for instance, polymeric Ru(ll) complexes as polycationic species and poly(sodium acrylate) as polyanion in the LbL deposition process, efficient light-emitting solid-state devices could be fabricated. In another example, a ferrocene-containing redox active polycation was combined with an enzyme to produce electrocatalytically active enzyme/mediator multilayer structures. Multilayers composed of poly(4-vinylpyri-dine) complexed with [Os(bpy)2Cl]+ + and, for example, poly(sodium 4-styrene-sulfonate) were used to accomplish the electrocatalytic reduction of nitrite. ... [Pg.100]

PCL is a bioresorbable and biocompatible aliphatic polyester that is generally used in pharmaceutical products and wound dressings. In addition, PCL nanofibrous matrices coated with collagen support cell growth or make the three-dimensional structured multilayer of PCL nanofibers and collagen nanofibers suitable for blood... [Pg.68]

The modern Russian MIA flaw detectors use pulse version of the method [1-3], which peirnits to produce very portable (0.7 - 1.5 kg) and simple instruments, convenient especially for in-service testing. The objects to be tested are multilayer structures of reinforced plastics, metals and other materials honeycomb panels, antenna fairings, propellers, helicopter rotors and so on. In mentioned instruments amplitude-frequency analog signal processing is used. [Pg.827]

Lange, Yu V. Low Frequency Acoustic Methods and Means for Nondestructive. Testing of Multilayer Structures. Moscow, Mashinostrojenije, 1991, 272 p. (in Russian)... [Pg.832]

The discovery of perfect geodesic dome closed structures of carbon, such as C o has led to numerous studies of so-called Buckminster fullerene. Dislocations are important features of the structures of nested fullerenes also called onion skin, multilayered or Russian doll fullerenes. A recent theoretical study [118] shows that these defects serve to relieve large inherent strains in thick-walled nested fullerenes such that they can show faceted shapes. [Pg.278]

The first term on the right is the common inverse cube law, the second is taken to be the empirically more important form for moderate film thickness (and also conforms to the polarization model, Section XVII-7C), and the last term allows for structural perturbation in the adsorbed film relative to bulk liquid adsorbate. In effect, the vapor pressure of a thin multilayer film is taken to be P and to relax toward P as the film thickens. The equation has been useful in relating adsorption isotherms to contact angle behavior (see Section X-7). Roy and Halsey [73] have used a similar equation earlier, Halsey [74] allowed for surface heterogeneity by assuming a distribution of Uq values in Eq. XVII-79. Dubinin s equation (Eq. XVII-75) has been mentioned another variant has been used by Bonnetain and co-workers [7S]. [Pg.629]

Returning to multilayer adsorption, the potential model appears to be fundamentally correct. It accounts for the empirical fact that systems at the same value of / rin P/F ) are in essentially corresponding states, and that the multilayer approaches bulk liquid in properties as P approaches F. However, the specific treatments must be regarded as still somewhat primitive. The various proposed functions for U r) can only be rather approximate. Even the general-appearing Eq. XVn-79 cannot be correct, since it does not allow for structural perturbations that make the film different from bulk liquid. Such perturbations should in general be present and must be present in the case of liquids that do not spread on the adsorbent (Section X-7). The last term of Eq. XVII-80, while reasonable, represents at best a semiempirical attempt to take structural perturbation into account. [Pg.654]

Clearly, it is more desirable somehow to obtain detailed structural information on multilayer films so as perhaps to settle the problem of how properly to construct the potential function. Some attempts have been made to develop statistical mechanical other theoretical treatments of condensed layers in a potential field success has been reasonable (see Refs. 142, 143). [Pg.655]

Jones R, Tredgold R H, Hoorfar A, Allen R A and Hodge P 1985 Crystal-formation and growth in Langmuir-Blodgett multilayers of azobenzene derivatives—optical and structural studies Thin Solid Films 134 57-66... [Pg.2631]

Schneider J, Erdelen C, Ringsdorf H and Rabolt J F 1989 Structural studies of polymers with hydrophilic spacer groups. 2. Infrared-spectroscopy of Langmuir-Blodgett multilayers of polymers with fluorocarbon side-chains at ambient and elevated temperatures Macromolecules 22 3475-80... [Pg.2634]

When the film thickens beyond two or three molecular layers, the effect of surface structure is largely smoothed out. It should therefore be possible, as Hill and Halsey have argued, to analyse the isotherm in the multilayer region by reference to surface forces (Chapter 1), the partial molar entropy of the adsorbed film being taken as equal to that of the liquid adsorptive. By application of the 6-12 relation of Chapter 1 (with omission of the r" term as being negligible except at short distances) Hill was able to arrive at the isotherm equation... [Pg.89]

Layered Structures. Whenever a barrier polymer lacks the necessary mechanical properties for an appHcation or the barrier would be adequate with only a small amount of the more expensive barrier polymer, a multilayer stmcture via coextmsion or lamination is appropriate. Whenever the barrier polymer is difficult to melt process or a particular traditional substrate such as paper or cellophane [9005-81-6] is necessary, a coating either from latex or a solvent is appropriate. A layered stmcture uses the barrier polymer most efficiently since permeation must occur through the barrier polymer and not around the barrier polymer. No short cuts are allowed for a permeant. The barrier properties of these stmctures are described by the permeance which is described in equation 16 where and L are the permeabiUties and thicknesses of the layers. [Pg.495]

Powder Insulation A method of reahzing some of the benefits of multiple floating shields without incurring the difficulties of awkward structural complexities is to use evacuated powder insulation. The penalty incurred in the use of this type of insulation, however, is a tenfold reduction in the overall thermal effectiveness of the insulation system over that obtained for multilayer insulation. In applications where this is not a serious factor, such as LNG storage facihties, and investment cost is of major concern, even unevacuated powder-insulation systems have found useful apphcations. The variation in apparent mean thermal conductivity of several powders as a function of interstitial gas pressure is shown in the familiar S-shaped curves of Fig. 11-121. ... [Pg.1135]

Foam Insulation Since foams are not homogeneous materials, their apparent thermal conductivity is dependent upon the bulk density of tne insulation, the gas used to foam the insulation, and the mean temperature of the insulation. Heat conduction through a foam is determined by convection and radiation within the cells and by conduction in the solid structure. Evacuation of a foam is effective in reducing its thermal conductivity, indicating a partially open cellular structure, but the resulting values are stiU considerably higher than either multilayer or evacuated powder insulations. [Pg.1135]

Multilayered structures play an important role in the production of, e.g., biomaterials, catalysts, corrosion protectors, detectors/diodes, gas and humidity sensors, integral circuits, optical parts, solar cells, and wear protection materials. One of the most sophisticated developments is a head-up-display (HUD) for cars, consisting of a polycarbonate substrate and a series of the layers Cr (25 nm), A1 (150 nm), SiO, (55 nm), TiO, (31 nm), and SiO, (8 nm). Such systems should be characterized by non-destructive analytical methods. [Pg.411]

X-ray Diffraction (XRD) is a powerful technique used to uniquely identify the crystalline phases present in materials and to measure the structural properties (strain state, grain size, epitaxy, phase composition, preferred orientation, and defect structure) of these phases. XRD is also used to determine the thickness of thin films and multilayers, and atomic arrangements in amorphous materials (including polymers) and at inter ces. [Pg.198]

XRD is an excellenr, nondestructive method for identifying phases and characterizing the structural properties of thin films and multilayers. It is inexpensive and easy to implement. The future will see more use of GIXD and depth dependent measurements, since these provide important information and can be carried out on lab-based equipment (rather than requiring synchrotron radiation). Position sensitive detectors will continue to replace counters and photographic film. [Pg.212]

A. Segmuller, I, C. Noyan, V. S. Speriosu. X-Ray Diffraction Studies of Thin Films and Multilayer Structures. Prog. Cryst. Growth and Charact. 18,21, 1989. [Pg.213]

P. Dhez and C. Weisbuch. Physics, Fabrication, and Applications of Multilayered Structures. Plenum, New York, 1988. [Pg.213]

Equations la and lb are for a simple two-phase system such as the air-bulk solid interface. Real materials aren t so simple. They have natural oxides and surface roughness, and consist of deposited or grown multilayered structures in many cases. In these cases each layer and interface can be represented by a 2 x 2 matrix (for isotropic materials), and the overall reflection properties can be calculated by matrix multiplication. The resulting algebraic equations are too complex to invert, and a major consequence is that regression analysis must be used to determine the system s physical parameters. ... [Pg.405]

W. A. McGahan, and J. A. Woollam. App. Phys. Commun. 9, 1, 1989. Well written and illustrated review of electromagnetic theory applied to a multilayer structure including magnetic and magneto-optic layers. [Pg.411]

Three common uses of RBS analysis exist quantitative depth profiling, areal concentration measurements (atoms/cm ), and crystal quality and impurity lattice site analysis. Its primary application is quantitative depth profiling of semiconductor thin films and multilayered structures. It is also used to measure contaminants and to study crystal structures, also primarily in semiconductor materials. Other applications include depth profilii of polymers, high-T superconductors, optical coatings, and catalyst particles. ... [Pg.477]


See other pages where Multilayer structure is mentioned: [Pg.34]    [Pg.54]    [Pg.66]    [Pg.55]    [Pg.633]    [Pg.11]    [Pg.211]    [Pg.224]    [Pg.34]    [Pg.54]    [Pg.66]    [Pg.55]    [Pg.633]    [Pg.11]    [Pg.211]    [Pg.224]    [Pg.571]    [Pg.674]    [Pg.1887]    [Pg.53]    [Pg.71]    [Pg.499]    [Pg.16]    [Pg.211]    [Pg.212]    [Pg.356]    [Pg.372]    [Pg.410]    [Pg.529]    [Pg.533]    [Pg.657]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



© 2024 chempedia.info