Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal electrodes platinum

Potentiometric Titrations. If one wishes to analyze electroactive analytes that are not ions or for which ion-selective electrodes are not available, two problems arise. First, the working electrodes, such as silver, platinum, mercury, etc, are not selective. Second, metallic electrodes may exhibit mixed potentials, which may arise from a variety of causes. For example, silver may exchange electrons with redox couples in solution, sense Ag" via electron exchange with the external circuit, or tarnish to produce pH-sensitive oxide sites or Ag2S sites that are sensitive to sulfide and haUde. On the other... [Pg.56]

The cell employed must be re-designed, and in a typical form the metal electrodes (which need not be platinum) encircle the outside of the glass container and are situated about 2.5 cm apart. Thus they are not in contact with the liquid which can be advantageous for dealing with corrosive materials. Various forms of apparatus suitable for use with such cells have been devised.18,19... [Pg.527]

Breiter, M. W. Adsorption of Organic Species on Platinum Metal Electrodes 10... [Pg.601]

Therefore, the following method was suggested and realized (the scheme is shown in Fig. 17). A 1.5 M solution of KCl or NaCl (the effect of preventing BR solubility of these salts is practically the same) was used as a subphase. A platinum electrode was placed in the subphase. A flat metal electrode, with an area of about 70% of the open barriered area, was placed about 1.5-2 mm above the subphase surface. A positive potential of +50 -60 V was applied to this electrode with respect to the platinum one. Then BR solution was injected with a syringe into the water subphase in dark conditions. The system was left in the same conditions for electric field-induced self-assembly of the membrane fragments for 1 hour. After this, the monolayer was compressed to 25 mN/m surface pressure and transferred onto the substrate (porous membrane). The residual salt was washed with water. The water was removed with a nitrogen jet. [Pg.162]

Oxidation H2 + 2 H2 0 2 H3 O " + 2 e Each half-reaction occurs at a platinum metal electrode,... [Pg.1373]

When an electrolytic cell is designed, care must be taken in the selection of the cell components. For example, consider what happens when an aqueous solution of sodium chloride is electrolyzed using platinum electrodes. Platinum is used for passive electrodes, because this metal is resistant to oxidation and does not participate in the redox chemistry of the cell. There are three major species in the solution H2 O, Na, and Cl. Chloride ions... [Pg.1411]

The underlying problem in testing the validity of the additivity principle in corrosion, mineral extraction, and electroless plating is that the electrode metal itself forms part of one of the half-reactions involved, e.g., zinc in equation (5) and copper in equations (8) and (12). A much better test system is provided by the interaction of two couples at an inert metal electrode that does not form a chemical part of either couple. A good example is the heterogeneous catalysis by platinum or a similar inert metal of the reaction... [Pg.6]

Most of the studies have involved the alloying of a second metal to platinum. The second metal was generally chosen because of its ability to increase the concentration of oxygenated species on the electrode surface, but also for its corrosion resistance. Even if some discrepancies exist in the literature, R-Ru is now widely accepted as the most interesting one, and hence our analysis will focus on this alloy in the next subsection. Other alloys such as R-lr, R-Os, or R-Re have also been reported to be good candidates, and R-Mo under specific conditions of preparation was claimed to have the desired properties. The Pt-Sn alloy is still a subject... [Pg.88]

On the surface of metal electrodes, one also hnds almost always some kind or other of adsorbed oxygen or phase oxide layer produced by interaction with the surrounding air (air-oxidized electrodes). The adsorption of foreign matter on an electrode surface as a rule leads to a lower catalytic activity. In some cases this effect may be very pronounced. For instance, the adsorption of mercury ions, arsenic compounds, or carbon monoxide on platinum electrodes leads to a strong decrease (and sometimes total suppression) of their catalytic activity toward many reactions. These substances then are spoken of as catalyst poisons. The reasons for retardation of a reaction by such poisons most often reside in an adsorptive displacement of the reaction components from the electrode surface by adsorption of the foreign species. [Pg.534]

When the solution in this redox system is in contact with a nonconsumable metal electrode (e.g., a platinum electrode), the equilibrium set up also implies equal electrochemical potentials, and pp, of the electrons in the metal and electrolyte. [Pg.560]

Given the results obtained on platinum electrodes discussed in some detail in the previous section, it is clearly of fundamental interest to study the mechanism of CO oxidation on other transition metal electrodes, and to compare the results with platinum. Rhodium has been the electrode material that has been studied in greatest detail after platinum, and results obtained with rhodium have provided some very significant insights into some of the general issues about the CO oxidation mechanism. [Pg.173]

Capon A, Parsons R. 1973b. Oxidation of formic acid at noble metal electrodes. III. Intermediates and mechanism on platinum electrodes. J Electroanal Chem 45 215-231. [Pg.200]

Korzeniewski C, Pons S, Schmidt PP, Severson MW. 1986. A theoretical analysis of the vibrational spectrum of carbon monoxide on platinum metal electrodes. J Chem Phys 85 4153-4160. [Pg.406]

Important inherent characteristics of an enzyme that should be considered are the substrate affinity, characterized by the Michaelis constant the rate of turnover fecat> providing the catalytic efficiency fecat/ M. and the catalytic potential. Several attempts to compare enzyme catalysis with that of platinum have been published. Direct comparisons are difficult, because enzyme electrodes must be operated in aqueous electrolyte containing dissolved substrate, whereas precious metal electrodes aie often supplied with a humidified gaseous stream of fuel or oxidant, and produce water as steam. It is not straightforward to compare tme optimal turnover rates per active site, as it is often unclear how many active sites are being engaged in a film of enzyme on an electrode. [Pg.597]

Gas These are constructed by placing a strip of nonreactive metals (usually platinum or gold) in contact with both the solution and a gas stream (a) the hydrogen electrode consists of a platinum strip exposed to a current of hydrogen, and partly immersed in an acid solution. A potential is set up between the gas and the solution, the equilibrium involved being H2 2H + 2 e (b) potentials also occur when the halogens are in contact with their ions in solution, the equilibrium in the case of chlorine being Cl2 + 2 e- 2 Cl". [Pg.633]

Solid metal electrodes are usually polished mechanically and are sometimes etched with nitric acid or aqua regia. Purification of platinum group metal electrodes is effectively achieved also by means of high-frequency plasma treatment. However, electrochemical preparation of the electrode immediately prior to the measurement is generally most effective. The simplest procedure is to polarize the electrode with a series of cyclic voltammetric pulses in the potential range from the formation of the oxide layer (or from the evolution of molecular oxygen) to the potential of hydrogen evolution (Fig. 5.18F). [Pg.318]

The anodic evolution of oxygen takes place at platinum and other noble metal electrodes at high overpotentials. The polarization curve obeys the Tafel equation in the potential range from 1.2 to 2.0 V with a b value between 0.10 and 0.13. Under these conditions, the rate-controlling process is probably the oxidation of hydroxide ions or water molecules on the surface of the electrode covered with surface oxide ... [Pg.372]

It is clear from the calculated limiting-current curves in Fig. 3a that the plateau of the copper deposition reaction at a moderate limiting-current level like 50 mA cm 2 is narrowed drastically by the surface overpotential. On the other hand, the surface overpotential is small for reduction of ferri-cyanide ion at a nickel or platinum electrode (Fig. 3b). At noble-metal electrodes in well-supported solutions, the exchange current density appears to be well above 0.5 A/cm2 (Tla, S20b, D6b, A3e). At various types of carbon, the exchange current density is appreciably smaller (Tla, S17a, S17b). [Pg.227]

Safety is an important factor when determining the quality of any iontophoresis electrode. During transdermal iontophoretic delivery using metal electrodes, an applied DC current will induce pH changes on the electrode/skin interface [178], pH measurement is used to eliminate the possibility of unsafe pH changes (chemical bums). It has been reported that the pH shift caused by platinum electrodes has a significant influence on the permeation and stability of insulin [175],... [Pg.317]

D.R. McMillin, Purdue University You indicated that emission can sometimes be detected from luminophors fixed near a platinum electrode. Isn t this surprising given the fact that metal electrodes are generally excellent quenchers of excited states ... [Pg.168]

Reactions involving charge transfer through the interface, and hence the flow of a current, are called electrochemical reactions. Two types of such reactions are indicated in Fig. 1.1. The upper one is an instance of metal deposition. It involves the transfer of a metal ion from the solution onto the metal surface, where it is discharged by taking up electrons. Metal deposition takes place at specific sites in the case shown it is a hollow site between the atoms of the metal electrode. The deposited metal ion may belong to the same species as those on the metal electrode, as in the deposition of a Ag+ ion on a silver electrode, or it can be different as in the deposition of a Ag+ ion on platinum. In any case the reaction is formally written as ... [Pg.7]


See other pages where Metal electrodes platinum is mentioned: [Pg.29]    [Pg.5376]    [Pg.76]    [Pg.200]    [Pg.37]    [Pg.29]    [Pg.5376]    [Pg.76]    [Pg.200]    [Pg.37]    [Pg.193]    [Pg.44]    [Pg.1250]    [Pg.219]    [Pg.61]    [Pg.575]    [Pg.594]    [Pg.107]    [Pg.117]    [Pg.187]    [Pg.44]    [Pg.208]    [Pg.265]    [Pg.410]    [Pg.531]    [Pg.192]    [Pg.301]    [Pg.640]    [Pg.683]    [Pg.221]    [Pg.304]    [Pg.562]    [Pg.18]    [Pg.440]   


SEARCH



Metal platinum

Metallic electrodes

Platinum electrode

© 2024 chempedia.info