Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical solubility

Kayserilioglu, B. S., Bakir, U., Yilmaz, L. Akkas, N. (2003). Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films mechanical, solubility and water vapor transfer rate properties. Bioresource Technology, Vol. 87, 3, (May 2003), pp. (239-246), ISSN 0960-8524... [Pg.81]

Filler Availability Mechanical Solubility Absorbency Acid/base Abrasiveness Lubricity... [Pg.299]

This can be conceived as mechanical solubility, which does not imply either reactivity or modifications of the molecular structure of the compound of interest. Several gaseous species do not exhibit solubility of the type exemplified by equation 9.63, but more or less complex reactions with melt components. For instance, in the case of CO2,... [Pg.631]

Generally, in the case of mechanical solubility, an extended Henry s law field is observed, whereas homogeneous equilibria of type 9.66 usually imply precocious deviations from ideality (Battino and Clever, 1966 Wilhem et al., 1977). [Pg.632]

Both lithium and barium salts reduce expansion based on alkali-silicate and alkali-carbonate swelling through the osmotic pressure development mechanisms. Two theories have been postulated [5, 11]. According to the first mechanism, soluble metal silicates, formed by the attack of alkali hydroxides on silica, are said to convert to insoluble lithium silicates in the presence of lithium salts. Consequently, less water is imbibed and this results... [Pg.313]

Numerous nonmembranous proteins are retained by and function in the ER. Retention of these proteins is accomplished by a surprisingly simple mechanism. Soluble ER proteins all share the common C-terminal sequence. Lys-Asp-Glu-Leu (or KDEL in single-letter language). A protein receptor appears to be bound to the ER membrane that recognizes and binds this sequence. The passive nature... [Pg.759]

Several other polyamides are derived from natural poly(amino acids) that are subject to a subsequent synthetic treatment. Examples are casein, groundnut protein fiber, and zein, which after a treatment with formaldehyde led to new materials with better mechanical/solubility properties. For example, casein is a mixture of several proteins that forms 3% of milk (as casein calcium salt). Casein can be fractionated into simpler proteins designated as a, 3, y, and k [37]. The amino acid content of casein is similar to... [Pg.614]

Reverse Osmosis Asymmetric membrane with homogeneous skin and microporous sub- or support structure Hydrostatic pressure 10-100 bar Solut ion-d if fusion mechanism, solubility, and dif-fusivity of individual components in the homogeneous polymer matrix determine separation characteristics. Concentration of microsolutes, such as salts, sugars, amino acids, etc., recovery of water from microbiological processes. [Pg.55]

Pervapor- ation Asymmetric membrane with homogeneous skin and microporous substructure. Partial vapor pressure gradient 0.001 to 1 bar Solution-diffusion mechanism, solubility and diffus-ivity of individual components in the polymer matrix determine separation characteristics. Separation of organic solutions such as ethanol, butanol, acetic acid, etc. from aqueous solutions, especially separation of azeotropic mixtures. [Pg.55]

Bulk characterization yields information on the macroscopic properties of the biomaterial such as thermal, mechanical, solubility, optical, and dielectric properties. Surface characterization yields morphological information that is critical for interfacing the implant or drug delivery device with the host tissue. This could be achieved by microscopic and spectfoscopic methods. Next in the hierarchy is the characterization of processes such as biodegradation mechanism and kinetics under biomimetic in vitro conditions. Cases of implanted device failure need to be assessed by systematic interrogation of explanted medical devices. After knowing the basic characteristics of the biomaterial, real-time investigation of in vivo processes plays a major role in the successful journey of an implant. [Pg.34]

Diffusion. In most cases, diffusion, without other combined mechanisms (solubility, adsorption, exclusion), produce low separation factors. High separation factors may be obtained only if diffusion is highly selective, e.g., point diffusion in holes of P-A1203, for Na ions. [Pg.15]

For diffusion of liquid through rubbery polymer composites, Fickian and non-Fickian diffusion theories are frequently used to describe the mechanism of transport, but for gas or vapour, other models have been developed to fit experimental data of diffusion profiles. The models of gas transport include Maxwell s model," free volume increase mechanism," solubility increase mechanism," nanogap hypothesis," Nielsen model, " " Bharadwaj model, ° Cussler model " " and Gusev and Lusti model, " etc. [Pg.799]

Burnable absorbers Number of control rods Absorber rods per control assembly Drive mechanism Soluble neutron absorber... [Pg.199]

C7HgN402. Occurs to a small extent in tea, but is chiefly prepared synthetically. Like caffeine, it is a very weak base which forms water-soluble compounds with alkalis. It has a similar pharmacological mechanism to that of caffeine and is used, in combination with ethy-lenediamine. as a diuretic and a bron-chodilator. [Pg.392]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

Most properties of linear polymers are controlled by two different factors. The chemical constitution of tire monomers detennines tire interaction strengtli between tire chains, tire interactions of tire polymer witli host molecules or witli interfaces. The monomer stmcture also detennines tire possible local confonnations of tire polymer chain. This relationship between the molecular stmcture and any interaction witli surrounding molecules is similar to tliat found for low-molecular-weight compounds. The second important parameter tliat controls polymer properties is tire molecular weight. Contrary to tire situation for low-molecular-weight compounds, it plays a fimdamental role in polymer behaviour. It detennines tire slow-mode dynamics and tire viscosity of polymers in solutions and in tire melt. These properties are of utmost importance in polymer rheology and condition tlieir processability. The mechanical properties, solubility and miscibility of different polymers also depend on tlieir molecular weights. [Pg.2514]

In many colloidal systems, both in practice and in model studies, soluble polymers are used to control the particle interactions and the suspension stability. Here we distinguish tliree scenarios interactions between particles bearing a grafted polymer layer, forces due to the presence of non-adsorbing polymers in solution, and finally the interactions due to adsorbing polymer chains. Although these cases are discussed separately here, in practice more than one mechanism may be in operation for a given sample. [Pg.2678]

By treatment with anhydrous aluminium chloride (Holmes and Beeman, 1934). Ordinary commercial, water-white benzene contains about 0 05 per cent, of thiophene. It is first dried with anhydrous calcium chloride. One litre of the dry crude benzene is shaken vigorously (preferably in a mechanical shaking machine) with 12 g. of anhydrous aluminium chloride for half an hour the temperature should preferably be 25-35°. The benzene is then decanted from the red liquid formed, washed with 10 per cent, sodium hydroxide solution (to remove soluble sulphur compounds), then with water, and finally dried over anhydrous calcium chloride. It is then distilled and the fraction, b.p. 79-5-80-5°, is collected. The latter is again vigorously shaken with 24 g. of anhydrous aluminium chloride for 30 minutes, decanted from the red liquid, washed with 10 per cent, sodium hydroxide solution, water, dried, and distilled. The resulting benzene is free from thiophene. [Pg.173]

In aqueous solution at 100° the change is reversible and equilibrium is reached when 95 per cent, of the ammonium cyanate has changed into urea. Urea is less soluble in water than is ammonium sulphate, hence if the solution is evaporated, urea commences to separate, the equilibrium is disturbed, more ammonium cyanate is converted into urea to maintain the equilibrium and evfflitually the change into urea becomes almost complete. The urea is isolated from the residue by extraction with boiling methyl or ethyl alcohol. The mechanism of the reaction which is generally accepted involves the dissociation of the ammonium cyanate into ammonia and cyanic acid, and the addition of ammonia to the latter ... [Pg.441]

In general, benzoylation of aromatic amines finds less application than acetylation in preparative work, but the process is often employed for the identification and characterisation of aromatic amines (and also of hydroxy compounds). Benzoyl chloride (Section IV, 185) is the reagent commonly used. This reagent is so slowly hydrolysed by water that benzoylation can be carried out in an aqueous medium. In the Schotten-Baumann method of benzoylation the amino compound or its salt is dissolved or suspended in a slight excess of 8-15 per cent, sodium hydroxide solution, a small excess (about 10-15 per cent, more than the theoretical quantity) of benzoyl chloride is then added and the mixture vigorously shaken in a stoppered vessel (or else the mixture is stirred mechanically). Benzoylation proceeds smoothly and the sparingly soluble benzoyl derivative usually separates as a solid. The sodium hydroxide hydrolyses the excess of benzoyl chloride, yielding sodium benzoate and sodium chloride, which remain in solution ... [Pg.582]

The Seetion entitled The BasiC ToolS Of Quantum Mechanics treats the fundamental postulates of quantum meehanies and several applieations to exaetly soluble model problems. These problems inelude the eonventional partiele-in-a-box (in one and more dimensions), rigid-rotor, harmonie oseillator, and one-eleetron hydrogenie atomie orbitals. The eoneept of the Bom-Oppenheimer separation of eleetronie and vibration-rotation motions is introdueed here. Moreover, the vibrational and rotational energies, states, and wavefunetions of diatomie, linear polyatomie and non-linear polyatomie moleeules are diseussed here at an introduetory level. This seetion also introduees the variational method and perturbation theory as tools that are used to deal with problems that ean not be solved exaetly. [Pg.2]

Before moving deeper into understanding what quantum mechanics means, it is useful to learn how the wavefunctions E are found by applying the basic equation of quantum mechanics, the Schrodinger equation, to a few exactly soluble model problems. Knowing the solutions to these easy yet chemically very relevant models will then facilitate learning more of the details about the structure of quantum mechanics because these model cases can be used as concrete examples. ... [Pg.10]

Solvent Effects on the Rate of Substitution by the S 2 Mechanism Polar solvents are required m typical bimolecular substitutions because ionic substances such as the sodium and potassium salts cited earlier m Table 8 1 are not sufficiently soluble m nonpolar solvents to give a high enough concentration of the nucleophile to allow the reaction to occur at a rapid rate Other than the requirement that the solvent be polar enough to dis solve ionic compounds however the effect of solvent polarity on the rate of 8 2 reactions IS small What is most important is whether or not the polar solvent is protic or aprotic Water (HOH) alcohols (ROH) and carboxylic acids (RCO2H) are classified as polar protic solvents they all have OH groups that allow them to form hydrogen bonds... [Pg.346]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Fig. 31. An acrylic terpolymer designed for chemically amplified resist applications. The properties each monomer contributes to the final polymeric stmcture are for MMA, PAG solubility, low shrinkage, adhesion and mechanical, strength for TBMA acid-cataly2ed deprotection and for MMA, aqueous... Fig. 31. An acrylic terpolymer designed for chemically amplified resist applications. The properties each monomer contributes to the final polymeric stmcture are for MMA, PAG solubility, low shrinkage, adhesion and mechanical, strength for TBMA acid-cataly2ed deprotection and for MMA, aqueous...

See other pages where Mechanical solubility is mentioned: [Pg.643]    [Pg.514]    [Pg.363]    [Pg.132]    [Pg.15]    [Pg.271]    [Pg.643]    [Pg.514]    [Pg.363]    [Pg.132]    [Pg.15]    [Pg.271]    [Pg.2597]    [Pg.2681]    [Pg.565]    [Pg.716]    [Pg.758]    [Pg.207]    [Pg.313]    [Pg.397]    [Pg.434]    [Pg.37]    [Pg.312]    [Pg.315]    [Pg.317]    [Pg.319]   


SEARCH



Influence of Soluble Mediators and Mechanical Forces on Articular Cartilage Cells

Mechanical solubility definition

Mechanism of Hydrosilylation Catalyzed by Surface versus Soluble Rhodium Siloxide Complexes

Solubility increase mechanism

Solubility-diffusion mechanism

Solubility-diffusion mechanism limitations

Solubility-diffusion mechanism transport

Soluble guanylate cyclase activation mechanism

Soluble methane monooxygenase protein mechanisms

Water soluble polymer-based mechanical properties

© 2024 chempedia.info