Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex reactions with

The Turing mechanism requires that the diffusion coefficients of the activator and inlribitor be sufficiently different but the diffusion coefficients of small molecules in solution differ very little. The chemical Turing patterns seen in the CIMA reaction used starch as an indicator for iodine. The starch indicator complexes with iodide which is the activator species in the reaction. As a result, the complexing reaction with the immobilized starch molecules must be accounted for in the mechanism and leads to the possibility of Turing pattern fonnation even if the diffusion coefficients of the activator and inlribitor species are the same 62. [Pg.3069]

When we expand our scope to consider complex reactions with slow reversible steps or an rds that is not of the bottleneck type, the interpretation of the rate... [Pg.218]

The processes of complex-ion formation referred to above can be described by the general term complexation. A complexation reaction with a metal ion involves the replacement of one or more of the coordinated solvent molecules by other nucleophilic groups. The groups bound to the central ion are called ligands and in aqueous solution the reaction can be represented by the equation ... [Pg.51]

The heterocycles can be cleaved by reaction with 4-(dimethylamino)pyri-dine, yielding Lewis base-stabilized monomeric compounds of the type dmap—M(R2)E(Tms)2 (M = Al, Ga E = P, As, Sb, Bi). This general reaction now offers the possibility to synthesize electronically rather than kinetically stabilized monomeric group 13/15 compounds. These can be used for further complexation reactions with transition metal complexes, leading to bimetallic complexes of the type dmap—M(Me2)E(Tms)2—M (CO) (M = Al, Ga E = P, As, Sb M = Ni, Gr, Ee). [Pg.161]

Equation (1.20) is frequently used to correlate data from complex reactions. Complex reactions can give rise to rate expressions that have the form of Equation (1.20), but with fractional or even negative exponents. Complex reactions with observed orders of 1/2 or 3/2 can be explained theoretically based on mechanisms discussed in Chapter 2. Negative orders arise when a compound retards a reaction—say, by competing for active sites in a heterogeneously catalyzed reaction—or when the reaction is reversible. Observed reaction orders above 3 are occasionally reported. An example is the reaction of styrene with nitric acid, where an overall order of 4 has been observed. The likely explanation is that the acid serves both as a catalyst and as a reactant. The reaction is far from elementary. [Pg.8]

Example 7.11 showed how reaction rates can be adjusted to account for reversibility. The method uses a single constant, Kkinetic or Kthemo and is rigorous for both the forward and reverse rates when the reactions are elementary. For complex reactions with fitted rate equations, the method should produce good results provided the reaction always starts on the same side of equilibrium. [Pg.239]

It is possible to replace one isocyanide by triphenylphosphine, or to replace two isocyanides with diphos, giving phosphine analogues of these complexes. These species are not available from analogous reactions of phosphine-palladium(O) and (II) complexes. Reactions with active alkyl halides proceeds with oxidation nitric oxide also oxidizes these complexes. [Eqs. (31, 32)]. [Pg.75]

The proposed reaction mechanism involves intermolecular nucleophilic addition of the amido ligand to the olefin to produce a zwitterionic intermediate, followed by proton transfer to form a new copper amido complex. Reaction with additional amine (presnmably via coordination to Cn) yields the hydroamination prodnct and regenerates the original copper catalyst (Scheme 2.15). In addition to the NHC complexes 94 and 95, copper amido complexes with the chelating diphosphine l,2-bis-(di-tert-bntylphosphino)-ethane also catalyse the reaction [81, 82]. [Pg.44]

Complex Reaction with Segregation in Semi-Batch Reactor... [Pg.481]

Chemical Kinetics, Tank and Tubular Reactor Fundamentals, Residence Time Distributions, Multiphase Reaction Systems, Basic Reactor Types, Batch Reactor Dynamics, Semi-batch Reactors, Control and Stability of Nonisotheimal Reactors. Complex Reactions with Feeding Strategies, Liquid Phase Tubular Reactors, Gas Phase Tubular Reactors, Axial Dispersion, Unsteady State Tubular Reactor Models... [Pg.722]

Photooxidation of Co2(CO)8 is a complex reaction, with major products being the simple monomers Co(02)(CO) (n = 1, 2) with the dioxygen bound side-on (rj2).89 The same products arise from reaction of Co atoms with CO and 02 at 10-12 K. [Pg.8]

Figure 1.105 Glutaraldehyde can undergo complex reactions with amine groups, resulting in aldehyde-containing derivatives that can be used in conjugation reactions. Figure 1.105 Glutaraldehyde can undergo complex reactions with amine groups, resulting in aldehyde-containing derivatives that can be used in conjugation reactions.
Hydroperoxide decomposing antioxidants. These are compounds that react with hydroperoxides without forming free radicals sulfides, phosphites, arsenites, thiophosphates, carbamates, and some metal complexes. Reactions with hydroperoxides can be either stoichiometric (typical of, for example, sulfides and phosphites) or catalytic (typical of chelate metal complexes). [Pg.490]

Limited research studies [6] show that the minerals from the yttrium groups can be recovered using alkyl hydroxamate collectors which form complex reactions with REO. [Pg.156]


See other pages where Complex reactions with is mentioned: [Pg.395]    [Pg.253]    [Pg.65]    [Pg.157]    [Pg.274]    [Pg.19]    [Pg.132]    [Pg.452]    [Pg.97]    [Pg.93]    [Pg.299]    [Pg.167]    [Pg.172]    [Pg.70]    [Pg.133]   


SEARCH



© 2024 chempedia.info