Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Materials, and surfaces

Other than the obvious advantages of reduced fluorescence and high resolution, FT Raman is fast, safe and requires mmimal skill, making it a popular analytic tool for the characterization of organic compounds, polymers, inorganic materials and surfaces and has been employed in many biological applications [41]. [Pg.1200]

The characteristics of a pressed compact are influenced by the characteristics of the powder rate and manner of pressure appHcation, maximum pressure appHed and for what period of time, shape of die cavity, temperature during compaction, additives such as lubricants and alloy agents, and die material and surface condition. The effect of various compaction variables on the pressed compact are shown in Figure 6. [Pg.182]

Artificial surfaces must be resistant to cigarette bums, vandaUsm, and other harm. Fire resistance is most critically evaluated by the NBS flooring radiant panel test (10). In this test, a gas-fired panel maintains a heat flux, impinging on the sample to be tested, between 1.1 W/cm at one end and 0.1 W/cm at the other. The result of the bum is reported as the flux needed to sustain flame propagation in the sample. Higher values denote greater resistance to burning results depend on material and surface constmction. Polypropylene turf materials are characterized by critical radiant flux indexes which are considerably lower than those for nylon and acryflc polymers (qv) (11). [Pg.534]

Coupons These are usually strip, flush discs or cylindrical rods mounted in suitable racks (inserted and retrieved at shutdown), or installed in the plant using high-pressure access systems. Coupons are available from several manufacturers in a variety of materials and surface finishes and are supplied pre-weighed. [Pg.1134]

Cardanol, a main component obtained by thermal treatment of cashew nut shell liquid (CNSL), is a phenol derivative having mainly the meta substituent of a C15 unsaturated hydrocarbon chain with one to three double bonds as the major. Since CNSL is nearly one-third of the total nut weight, a great amount of CNSL is obtained as byproducts from mechanical processes for the edible use of the cashew kernel. Only a small part of cardanol obtained in the production of cashew kernel is used in industrial fields, though it has various potential industrial utilizations such as resins, friction-lining materials, and surface coatings. Therefore, development of new applications for cardanol is very attractive. [Pg.239]

Dipartimento di Chimica, Materiali e Ingegneria Chimica G.Natta , Centro NEMAS -Nano Engineered MAterials and Surfaces, Politecnico di Milano, Milano, Italy Corresponding author Dipartimento di Chimica, Materiali e Ingegneria Chimica G.Natta , Centro NEMAS - Nano Engineered MAterials and Surfaces, Politecnico di Milano, Milano, Italy. Tel +39 02 2399 3238, Fax. +39 02 2399 3318, E-mail pio.forzatti polimi.it... [Pg.175]

Water is involved in most of the photodecomposition reactions. Hence, nonaqueous electrolytes such as methanol, ethanol, N,N-d i methyl forma mide, acetonitrile, propylene carbonate, ethylene glycol, tetrahydrofuran, nitromethane, benzonitrile, and molten salts such as A1C13-butyl pyridium chloride are chosen. The efficiency of early cells prepared with nonaqueous solvents such as methanol and acetonitrile were low because of the high resistivity of the electrolyte, limited solubility of the redox species, and poor bulk and surface properties of the semiconductor. Recently, reasonably efficient and fairly stable cells have been prepared with nonaqueous electrolytes with a proper design of the electrolyte redox couple and by careful control of the material and surface properties [7], Results with single-crystal semiconductor electrodes can be obtained from table 2 in Ref. 15. Unfortunately, the efficiencies and stabilities achieved cannot justify the use of singlecrystal materials. Table 2 in Ref. 15 summarizes the results of liquid junction solar cells prepared with polycrystalline and thin-film semiconductors [15]. As can be seen the efficiencies are fair. Thin films provide several advantages over bulk materials. Despite these possibilities, the actual efficiencies of solid-state polycrystalline thin-film PV solar cells exceed those obtained with electrochemical PV cells [22,23]. [Pg.233]

Auger electrons are not just a by-product of XPS. These highly surface-sensitive, primarily element-specific electrons form the basis of a spectroscopy which is highly appreciated in the fields of materials and surface science, namely Auger electron spectroscopy (AES) [5,17,19,20]. [Pg.84]

In conclusion, nanorods are a potentially interesting material, but present results still do not allow understanding of whether the nanostructure leads to an improvement of the intrinsic photocatalytic behaviour, or whether other factors (accessible surface area, enhanced adsorption, etc) are responsible for the observed differences. In ZnO nanorods have been shown quite recently by surface photovoltage spectroscopy that the built-in electrical field is the main driving force for the separation of the photogenerated electron-hole pairs.191 This indicates that the nano-order influences the photophysical surface processes after photogeneration of the electron-hole pairs. A similar effect could be expected for Titania nanorods. However, present data do not support this suggestion, mainly due to the absence of adequate photo-physical and -chemical characterization of the materials and surface processes. [Pg.374]

Consequently, the granular iron hydroxide seems to be suitable for an on site or in situ treatment of arsenic contaminated surface waters. However, the experiment is not yet finished and some more experiments (influence of the dissolved iron, regeneration of the material, and surface characterization) are required before the material can prove its efficiency in a pilot test in the filed. [Pg.30]

Despite the promising possibilities offered by the different types of nanoparticles, their routine use is still strongly limited by the very small number of commercially available systems and the limited amount of data on their reproducibility (in preparation, spectroscopic properties, and apphcation) and comparability (e.g., fluorescence quantum yields, stability) as well as on their potential for quantification. To date, no attempt has yet been published comparing differently functionalized nanoparticles from various sources (industrial and academic) in a Round Robin test, to evaluate achievable fluorescence quantum yields, and batch-to-batch variations for different materials and surface chemistries (including typical ligands and bioconjugates). Such data would be very helpful for practitioners and would present the first step to derive and establish quality criteria for these materials. [Pg.32]

To evaluate the influence on the gas composition by the measurement unit itself, information on the heating temperature, the materials and surface... [Pg.99]

The oxygen/water half-cell reaction has been one of the most challenging electrode systems for decades. Despite enormous research, the detailed reaction mechanism of this complex multi-step process has remained elusive. Also elusive has been an electrode material and surface that significantly reduces the rate-determining kinetic activation barriers, and hence shows improvements in the catalytic activity compared to that of the single-noble-metal electrodes such as Pt or Au. [Pg.420]

In the new version, Chapter 10 focuses exclusively on van der Waals forces and their implications for macroscopic phenomena and properties (e.g., structure of materials and surface tension). It also includes new tables and examples and some additional methods for estimating Hamaker constants from macroscopic properties or concepts such as surface tension, the parameters of the van der Waals equation of state, and the corresponding state principle. [Pg.682]

Carbon electrodes exhibit a wide range of electron transfer rates for benchmark redox systems, depending on carbon material and surface history. Two examples are shown in Figure 10.2, which compares two carbon surfaces with very different k° for Fe(CN) /4. In some cases, the variations in electrode kinetics have been particularly important to analytical applications. For example, carbon paste and carbon fiber electrodes have been used to monitor neurotransmitters in living animal brains [5,6]. The determination of catechol transmitters in the presence of relatively large amounts of interferents (e.g., ascorbate) de-... [Pg.297]

Another important goal in this area is the preparation of well-defined materials and surfaces. Seminal work by Tirrell, Fournier, and co workers [63]... [Pg.29]

Underwetting may be alleviated by changing the material and surface roughness of the packing. [Pg.67]

Wetting For operation at low liquid loads, the onset of minimum wetting can adversely affect scale-up, particularly with random packings and aqueous systems. Scale-up reliability at low liquid loads can be improved by pilot-testing at the composition range expected in the prototype, and by using identical packing materials and surface treatment in the pilot tests and in the prototype. [Pg.73]

The concept of using block copolymers for preparation of nanoscopically structured material and surfaces was advanced further by introducing a third block in the chain structure [29]. One of the consequences of the multiphilicity and versatility of the ABC triblock copolymers is their tremendous richness and diversity in morphology. One of the most peculiar structures is shown in Fig. 28 where the helices of a polybutadiene microphase are wound around columns of polystyrene which are embedded in a matrix of polymethylmethacrylate. Complementary to the TEM studies of the bulk morphology (Fig. 28a,b), SFM has been used to image the surface structure of the triblock copolymer films. Figure 28c shows the wrapped PS cylinders oriented parallel to the surface, where one... [Pg.111]

Other significant uses of PCBs included heat exchangers and hydraulic fluids. Prior to controls PCBs were also used in adhesives, coatings, plasticizers and inks for microencapsulating dyes for carbonless duplicating paper as extenders in pesticide formulations and catalyst carriers in olefin polymerizations to impart hydrophobicity to materials and surfaces in bactericide formulations (combined with insecticides), and in immersion oil for microscopes. Mixed with chloronaphthalenes, PCBs were also used in wire and cable insulation in the mine and shipbuilding industries (ref. 80, p. 455). [Pg.343]

Professor Stuart Hampshire Materials Ireland Research Centre Materials and Surface Science Institute... [Pg.7]

Lugovy, M., Orlovskaya, N., Berroth, K., Kuebler, J., Analysis of layered composite with crack deflection controlled by layer thickness, in Proceedings of NATO AST Functional Gradient Materials and Surface Layers Prepared by Fine Particle Technology, Kiev, Ukraine, 18-28 June 2000, ed. M.-I. Baraton and I. Uvarova, NATO Science Series, II, Mathematics, Physics and Chemistry, 16, Kluwer Academic Publishers, 273-280, 2001. [Pg.212]


See other pages where Materials, and surfaces is mentioned: [Pg.1858]    [Pg.174]    [Pg.106]    [Pg.409]    [Pg.121]    [Pg.852]    [Pg.408]    [Pg.611]    [Pg.583]    [Pg.154]    [Pg.316]    [Pg.290]    [Pg.135]    [Pg.244]    [Pg.161]    [Pg.338]    [Pg.347]    [Pg.113]    [Pg.299]    [Pg.403]    [Pg.260]    [Pg.264]    [Pg.972]    [Pg.15]    [Pg.73]    [Pg.179]    [Pg.382]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Material surface

© 2024 chempedia.info