Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid and vapor phases

In the calculation of vapor-liquid equilibria, it is necessary to calculate separately the fugacity of each component in each of the two phases. The liquid and vapor phases require different techniques in this chapter we consider calculations for the vapor phase. [Pg.25]

Subroutine PRDTA2. This subroutine reads the pure-component and binary parameters required for the various correlations describing the liquid and vapor phases. All input parameters are printed for verification. [Pg.217]

THE SUBROUTINE ACCEPTS BOTH A LIQUID FEED OF COMPOSITION XF AT TEMPERATURE TL(K) AND A VAPOR FEED OF COMPOSITION YF AT TVVAPOR FRACTION OF THE FEED BEING VF (MOL BASIS). FDR AN ISOTHERMAL FLASH THE TEMPERATURE T(K) MUST ALSO BE SUPPLIED. THE SUBROUTINE DETERMINES THE V/F RATIO A, THE LIQUID AND VAPOR PHASE COMPOSITIONS X ANO Y, AND FOR AN ADIABATIC FLASHf THE TEMPERATURE T(K). THE EQUILIBRIUM RATIOS K ARE ALSO PROVIDED. IT NORMALLY RETURNS ERF=0 BUT IF COMPONENT COMBINATIONS LACKING DATA ARE INVOLVED IT RETURNS ERF=lf ANO IF NO SOLUTION IS FOUND IT RETURNS ERF -2. FOR FLASH T.LT.TB OR T.GT.TD FLASH RETURNS ERF=3 OR 4 RESPECTIVELY, AND FOR BAD INPUT DATA IT RETURNS ERF=5. [Pg.322]

Figure 4.7 gives liquid and vapor phase envelopes for a hydrocarbon mixture. [Pg.150]

The vapor pressure of a crude oil at the wellhead can reach 20 bar. If it were necessary to store and transport it under these conditions, heavy walled equipment would be required. For that, the pressure is reduced (< 1 bar) by separating the high vapor pressure components using a series of pressure reductions (from one to four flash stages) in equipment called separators , which are in fact simple vessels that allow the separation of the two liquid and vapor phases formed downstream of the pressure reduction point. The different components distribute themselves in the two phases in accordance with equilibrium relationships. [Pg.319]

The principle of headspace sampling is introduced in this experiment using a mixture of methanol, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene, and p-xylene. Directions are given for evaluating the distribution coefficient for the partitioning of a volatile species between the liquid and vapor phase and for its quantitative analysis in the liquid phase. Both packed (OV-101) and capillary (5% phenyl silicone) columns were used. The GG is equipped with a flame ionization detector. [Pg.611]

Liquid- and vapor-phase processes have been described the latter appear to be advantageous. Supported cadmium, zinc, or mercury salts are used as catalysts. In 1963 it was estimated that 85% of U.S. vinyl acetate capacity was based on acetylene, but it has been completely replaced since about 1982 by newer technology using oxidative addition of acetic acid to ethylene (2) (see Vinyl polymers). In western Europe production of vinyl acetate from acetylene stiU remains a significant commercial route. [Pg.102]

Some processes use only one reactor (57) or a combination of liquid- and vapor-phase reactors (58). The goal of these schemes is to reduce energy consumption and capital cost. Hydrogenation normally is carried out at 2—3 MPa (20—30 atm). Temperature is maintained at 300—350°C to meet a typical specification of less than 500 ppm benzene in the product at higher temperatures, thermodynamic equiUbrium shifts to favor benzene and the benzene specification is impossible to attain. Also, at higher temperatures, isomerization of cyclohexane to methylcyclopentane occurs typically there is a 200 ppm specification limit on methylcyclopentane content. [Pg.408]

By-Products. Almost all commercial manufacture of pyridine compounds involves the concomitant manufacture of various side products. Liquid- and vapor-phase synthesis of pyridines from ammonia and aldehydes or ketones produces pyridine or an alkylated pyridine as a primary product, as well as isomeric aLkylpyridines and higher substituted aLkylpyridines, along with their isomers. Furthermore, self-condensation of aldehydes and ketones can produce substituted ben2enes. Condensation of ammonia with the aldehydes can produce certain alkyl or unsaturated nitrile side products. Lasdy, self-condensation of the aldehydes and ketones, perhaps with reduction, can lead to alkanes and alkenes. [Pg.333]

Vapor pressure is the most important of the basic thermodynamic properties affec ting liquids and vapors. The vapor pressure is the pressure exerted by a pure component at equilibrium at any temperature when both liquid and vapor phases exist and thus extends from a minimum at the triple point temperature to a maximum at the critical temperature, the critical pressure. This section briefly reviews methods for both correlating vapor pressure data and for predicting vapor pressure of pure compounds. Except at very high total pressures (above about 10 MPa), there is no effect of total pressure on vapor pressure. If such an effect is present, a correction, the Poynting correction, can be applied. The pressure exerted above a solid-vapor mixture may also be called vapor pressure but is normallv only available as experimental data for common compounds that sublime. [Pg.389]

Known as the Clapeyron equation, this is an exacl thermodynamic relation, providing a vital connection between the properties of the liquid and vapor phases. Its use presupposes knowledge of a suitable vapor pressure vs. temperature relation. Empirical in nature, such relations are approximated by the equation... [Pg.525]

The Kellogg and DePriester charts and their subsequent extensions and generahzations use the molar average boiling points of the liquid and vapor phases to represent the composition effect. An alternative measure of composition is the convergence pressure of the system, which is defined as that pressure at which the Kvalues for aU the components in an isothermal mixture converge to unity. It is analogous to the critical point for a pure component in the sense that the two... [Pg.1248]

Both liquid and vapor phases are totally miscible. Conventional vapor/liqiiid eqiiilihriiim. Neither phase is pure. Separation factors are moderate and decrease as purity increases. Ultrahigh purity is difficult to achieve. No theoretical limit on recovery. Liquid phases are totally miscible solid phases are not. Eutectic system. Sohd phase is pure, except at eutectic point. Partition coefficients are very high (theoretically, they can be infinite). Ultrahigh purity is easy to achieve. Recovery is hmited by eutectic composition. [Pg.1989]

In any mass transfer operation, the compositions of the liquid and vapor phases are assumed to follow the relationship illustrated by the column operating line. This line represents the overall calculated profile down the column however, the composition on each individual square foot of a particular column cross-section may vary from that represented by the operating line. These variations are the result of deviations in the hydraulic flow rates of the vapor and liquid phases, as well as incomplete mixing of the phases across the entire column. [Pg.84]

Tibbetts, G.G., Gorkiewicz, D.W., and Alig, R.A. A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons, Carbon, 993, 31(5), 809 814. Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W. and Alig R.L. Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 1994, 32(4), 569 576. [Pg.165]

A current vehicle fuel system designed for evaporative emission control should address enhanced SHED, running loss, and ORVR emission level requirements (see Table 1). A typical vehicle fuel system is shown in Fig. 4. The primary functions of the system are to store the liquid and vapor phases of the fuel with acceptable loss levels, and to pump liquid fuel to the engine for vehicle operation. The operation of the various components in the fuel system, and how they work to minimize evaporative losses during both driving and refueling events, is described below. [Pg.244]

The liquid fuel handling components of the fuel system include the fuel filler pipe, fuel tank, fuel pirmp, and the fuel supply and return lines. The fuel tank is a low pressure, low hydrocarbon emission vessel designed to contain both the liquid and vapor phases of the fuel. An electric pump located inside the fuel tank is used to transfer liquid fuel from the tank to the engine. The fuel in the tank is suctioned from a small reservoir in the tank which minimizes liquid level transients caused by vehicle motion. [Pg.244]

The shaded region is that part of the phase diagram where liquid and vapor phases coexist in equilibrium, somewhat in analogy to the boiling line for a pure fluid. The ordinary liquid state exists on the high-pressure, low-temperature side of the two-phase region, and the ordinary gas state exists on the other side at low pressure and high temperature. As with our earlier example, we can transform any Type I mixture... [Pg.154]

In a packed column, liquid and vapor flow counter-currently and separation between the liquid and vapor phases takes place continuously. In contrast, in a column with trays, separation occurs in stages. In a packed column, vapor does not bubble through the liquid as in the columns with trays. For this reason, and due to the absence of the vapor-flow orifices, packed columns operate at a much lower pressure drop. In addition, because liquid and vapor contact in a packed column is less agitated than in a trayed column, packed columns are less likely to foam. [Pg.299]

Triple point The temperature and pressure at which the solid, liquid, and vapor phase of a substance can coexist in equilibrium, 233 Tryptophan, 622t Tyrosine, 622t... [Pg.698]

Zabor et al. (Zl) have described studies of the catalytic hydration of propylene under such conditions (temperature 279°C, pressure 3675 psig) that both liquid and vapor phases are present in the packed catalyst bed. Conversions are reported for cocurrent upflow and cocurrent downflow, it being assumed in that paper that the former mode corresponds to bubble flow and the latter to trickle-flow conditions. Trickle flow resulted in the higher conversions, and conversion was influenced by changes in bed height (for unchanged space velocity), in contrast to the case for bubble-flow operation. The differences are assumed to be effects of mass transfer or liquid distribution. [Pg.104]

E7.1 For mixtures of 1-hexene (component l) + n-hexane (component 2), the total vapor pressure p above the mixture is related to Ay and ty, the mole fraction in the liquid and vapor phases as follows ... [Pg.374]

FIGURE 7.25 The variation of the (molar) Gibbs free energy with temperature for three phases of a substance at a given pressure. The most stable phase is the phase with lowest molar Gibbs free energy. We see that, as the temperature is raised, the solid, liquid, and vapor phases in succession become the most stable. [Pg.414]

A triple point is a point where three phase boundaries meet on a phase diagram. For water, the triple point for the solid, liquid, and vapor phases lies at 4.6 Torr and 0.01°C (see Fig. 8.6). At this triple point, all three phases (ice, liquid, and vapor) coexist in mutual dynamic equilibrium solid is in equilibrium with liquid, liquid with vapor, and vapor with solid. The location of a triple point of a substance is a fixed property of that substance and cannot be changed by changing the conditions. The triple point of water is used to define the size of the kelvin by definition, there are exactly 273.16 kelvins between absolute zero and the triple point of water. Because the normal freezing point of water is found to lie 0.01 K below the triple point, 0°C corresponds to 273.15 K. [Pg.438]

Bowers and Mudawar (1994a) performed an experimental smdy of boiling flow within mini-channel (2.54 mm) and micro-channel d = 510 pm) heat sink and demonstrated that high values of heat flux can be achieved. Bowers and Mudawar (1994b) also modeled the pressure drop in the micro-channels and minichannels, using the Collier (1981) and Wallis (1969) homogenous equilibrium model, which assumes the liquid and vapor phases form a homogenous mixture with equal and uniform velocity, and properties were assumed to be uniform within each phase. [Pg.350]

A fluid is described as supercritical or subcritical if its temperature is above or below its critical temperature. Above the critical temperature the liquid and vapor phases are indistinguishable, the densities of the two phases become identical and the substance is described as a fluid, the physical properties of which are intermediate between those of a liquid and a gas [75]. [Pg.284]

Using standard thermodynamics, it can be shown that, at modest pressures, the equality of solvent chemical potential in both liquid and vapor phases can be transformed to... [Pg.183]

Also if m and m denote the monomer in the liquid and vapor phases respectively, then the residual monomers are given by,... [Pg.298]

In the flow schematic (Fig. 20-76), the condenser controls the vapor pressure of the permeating component. The vacnnm pnmp, as shown, pumps both liquid and vapor phases from the condenser. Its major duty is the removal of noncondensibles. Early work in pervaporation focused on organic-organic separations. Many have been demonstrated few if any have been commercialized. Still, there are prospects for some difficult organic separations. [Pg.64]

In most unit operations it is of considerable importance that material is transferred from one phase to another across a boundary. The transfer of material from a solid phase to a liquid phase (as typically in leaching), or the transfer of material between one liquid phase to another liquid phase (as typically in molten metal and molten slag phases), extraction or between liquid and vapor phases (as typically in distillation) are well-known examples encountered in practice. [Pg.321]


See other pages where Liquid and vapor phases is mentioned: [Pg.6]    [Pg.1992]    [Pg.2292]    [Pg.2292]    [Pg.175]    [Pg.204]    [Pg.342]    [Pg.347]    [Pg.280]    [Pg.305]    [Pg.429]    [Pg.431]    [Pg.438]    [Pg.453]    [Pg.4]    [Pg.402]    [Pg.296]    [Pg.245]    [Pg.6]    [Pg.6]   


SEARCH



Liquid vapor and

Phase vapor-liquid

© 2024 chempedia.info