Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Column cross-section

Another important plate which has characteristics similar to a counterflow plate is the Multiple Downcomer (MD) plate (52). This is a plate where the active area occupies the full column cross section but with a pluraHty of small downcomers interspersed among the perforations. The downcomers are specially sealed to prevent upflow of vapor through them. The plate has been used successfully in many high Hquid flow cases. [Pg.168]

The term in equation 42 is called a Souders-Brown capacity parameter and is based on the tendency of the upflowing vapor to entrain Hquid with it to the plate above. The term E in equation 43 is called an E-factor. and E to be meaningful the cross-sectional area to which they apply must be specified. The capacity parameter is usually based on the total column cross section minus the area blocked for vapor flow by the downcomer(s). Eor the E-factor, typical operating ranges for sieve plate columns are... [Pg.168]

Packed columns must be provided with good initial distribution of liquid across the column cross section and redistribution of liquid at various height intei vals that decrease with increasing column diameter. A wide variety of distributors and redistributors are available. Packed columns should be considered when ... [Pg.1346]

Information on the liquid- and gas-handling capacity of the contacting device chosen for the pariicular separation problem. Such information includes pressure drop charac teristics of the device, in order that an optimum balance between capaital cost (column cross section) and energy requirements might be achieved. Capacity and pressure drop charac teristics of the available devices are covered later in this Sec. 14. [Pg.1350]

It should be noted that the fraction of column cross-sectional area available for gas dispersers (perforations, bubble caps) decreases when more than one downcomer is used. Thus, optimum design of the plate involves a balance between hquid-flow accommodation and effective use of cross section for gas flow. [Pg.1370]

For cross-flow plates, net area is the column cross section less that area blocked by the downcomer or downcomers (Fig. 14-22). The vapor velocity in the net area represents an approach velocity and thus controls the level of liquid entrainment. For counterflow plates, net area is the same as the column cross section, since no downcomers are involved. [Pg.1372]

The liquid distributor not dividing the hquid evenly over the column cross section. [Pg.1396]

For design, the slip velocity is derated to 70-80 percent of the calculated value to give some margin of safety this sets the design value of the continuous phase velocity (V ). The column cross sectional area (and therefore diameter) is set by QJVc- With the diameter set, the other dimensions can be set using the ratios given above. [Pg.1482]

Performance information for the purification of p-xylene indicates that nearly 100 percent of the ciystals in the feed stream are removed as produc t. This suggests that the liquid which is refluxed from the melting section is effectively refrozen oy the countercurrent stream of subcooled crystals. A high-meltingproduct of 99.0 to 99.8 weight percent p-xylene has been obtained from a 65 weight percent p-xyfene feed. The major impurity was m-xylene. Figure 22-12 illustrates the column-cross-section-area-capacity relationship for various product purities. [Pg.1995]

To illustrate, consider the hmiting case in which the feed stream and the two liquid takeoff streams of Fig. 22-45 are each zero, thus resulting in batch operation. At steady state the rate of adsorbed carty-up will equal the rate of downward dispersion, or afV = DAdC/dh. Here a is the surface area of a bubble,/is the frequency of bubble formation. D is the dispersion (effective diffusion) coefficient based on the column cross-sectional area A, and C is the concentration at height h within the column. [Pg.2021]

By using an anionic collector and external reflux in a combined (enriching and stripping) column of 3.8-cm (1.5-in) diameter with a feed rate of 1.63 ni/n [40 gal/(h ft )] based on column cross section, D/F was reduced to 0.00027 with C JCp for Sr below 0.001 [Shou-feld and Kibbey, Nucl. AppL, 3, 353 (1967)]. Reports of the adsubble separation of 29 heavy metals, radioactive and otheiwise, have been tabulated [Lemlich, The Adsorptive Bubble Separation Techniques, in Sabadell (ed.), Froc. Conf. Traces Heavy Met. Water, 211-223, Princeton University, 1973, EPA 902/9-74-001, U.S. EPA, Reg. 11, 1974). Some separation of N from by foam fractionation has been reported [Hitchcock, Ph.D. dissertation. University of Missouri, RoUa, 1982]. [Pg.2022]

The maximum allowable mass velocity for the total column cross section is calculated as follows ... [Pg.59]

The F factor is used in the expression U = F/(pv)° to obtain the allowable superficial vapor velocity based on free column cross-sectional area (total column area minus the downcomer area). For foaming systems, the F factor should be multiplied by 0.75. [Pg.60]

Clear liquid velocity (ft/sec) through the downcomer is then found by multiplying DL by 0.00223. The correlation is not valid if Pl - pv is less than 301b/ft (very high pressure systems). For foaming systems, DL should be multiplied by 0.7. Frank recommends segmental downcomers of at least 5% of total column cross-sectional area, regardless of the area obtained by this correlation. [Pg.61]

Calculate minimum column cross-sectional area. Use the larger of... [Pg.64]

ATM = Minimum column cross-sectional area, tV. Further detailed design calculations may result in a change in tower diameter. [Pg.65]

ADM = Minimum downcomer area, fT ATM = Minimum column cross-sectional area, fr CAF = Vapor capacity factor CAFo = Flood capacity factor at zero liquid load CFS = Vapor rate, actual ftVsec DT = Tower diameter, ft DTA = Approximate tower diameter, ft FF == Flood factor or design percent of flood, fractional FPL = Tray flow path length, in. [Pg.65]

The gas risers must have a sufficient flow area to avoid a high gas-phase pressure drop. In addition, these gas risers must be uniformly positioned to maintain proper gas distribution. The gas risers should be equipped w ith covers to deflect the liquid raining onto this collector plate and prevent it from entering the gas risers where the high gas velocity could cause entrainment. These gas riser covers must be kept a sufficient distance below the next packed bed to allow the gas phase to come to a uniform flow rate per square foot of column cross-sectional area before entering the next bed. [Pg.83]

In any mass transfer operation, the compositions of the liquid and vapor phases are assumed to follow the relationship illustrated by the column operating line. This line represents the overall calculated profile down the column however, the composition on each individual square foot of a particular column cross-section may vary from that represented by the operating line. These variations are the result of deviations in the hydraulic flow rates of the vapor and liquid phases, as well as incomplete mixing of the phases across the entire column. [Pg.84]

HETP = height equivalent to a theoretical plate, ft HTU = height of a transfer unit, ft L = liquid mass velocity, Ib/hr-ft m = exponent a 1.0 n = exponent 0.44 Pr = Prandtl number, dimensionless Sc = Schmidt number dimensionless U, = linear velocity of gas based on total column cross-sectional area, ft/sec... [Pg.215]

Calculate column cross-section area using the operational gas rate, G, and the calculated value of Gf (gas loading factor) ... [Pg.298]

The gas superficial velocity is defined as the ratio of gas flow rate to column cross sectional area ... [Pg.149]

By using an anionic collector and external reflux in a combined (enriching and stripping) column of 3.8-cm (1.5-in) diameter with a feed rate of 1.63 m/h [40 gaP(h fU)] based on column cross section,... [Pg.35]


See other pages where Column cross-section is mentioned: [Pg.44]    [Pg.1374]    [Pg.1392]    [Pg.1420]    [Pg.1480]    [Pg.223]    [Pg.306]    [Pg.312]    [Pg.374]    [Pg.69]    [Pg.269]    [Pg.436]    [Pg.436]    [Pg.599]    [Pg.176]    [Pg.188]    [Pg.266]    [Pg.342]    [Pg.165]    [Pg.105]    [Pg.109]    [Pg.82]    [Pg.255]    [Pg.255]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Column cross-sectional area

Generator column, cross section

© 2024 chempedia.info