Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis aluminum

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

In a generalized sense, acids are electron pair acceptors. They include both protic (Bronsted) acids and Lewis acids such as AlCb and BF3 that have an electron-deficient central metal atom. Consequently, there is a priori no difference between Bronsted (protic) and Lewis acids. In extending the concept of superacidity to Lewis acid halides, those stronger than anhydrous aluminum chloride (the most commonly used Friedel-Crafts acid) are considered super Lewis acids. These superacidic Lewis acids include such higher-valence fluorides as antimony, arsenic, tantalum, niobium, and bismuth pentafluorides. Superacidity encompasses both very strong Bronsted and Lewis acids and their conjugate acid systems. [Pg.98]

Alkyl halides by themselves are insufficiently electrophilic to react with benzene Aluminum chloride serves as a Lewis acid catalyst to enhance the electrophihcity of the alkylating agent With tertiary and secondary alkyl halides the addition of aluminum chlonde leads to the formation of carbocations which then attack the aromatic ring... [Pg.481]

Aluminum chloride is a stronger Lewis acid than iron(lll) bromide and has been used as a catalyst in electrophilic bromination when as in the example shown the aromatic ring bears a strongly deactivating substituent... [Pg.504]

Stereoselective All lations. Ben2ene is stereoselectively alkylated with chiral 4-valerolactone in the presence of aluminum chloride with 50% net inversion of configuration (32). The stereoselectivity is explained by the coordination of the Lewis acid with the carbonyl oxygen of the lactone, resulting in the typ displacement at the C—O bond. Partial racemi2ation of the substrate (incomplete inversion of configuration) results by internal... [Pg.553]

Acid Halides (Lewis Acids). AH metal haUde-type Lewis catalysts, generally known as Friedel-Crafts catalysts, have an electron-deficient central metal atom capable of electron acceptance from the basic reagents. The most frequendy used are aluminum chloride and bromide, followed by... [Pg.564]

In addition, boron, aluminum, and gallium tris(triduoromethanesulfonates) (tridates), M(OTf)2 and related perduoroalkanesulfonates were found effective for Friedel-Crafts alkylations under mild conditions (200). These Lewis acids behave as pseudo haUdes. Boron tris(tridate) shows the highest catalytic activity among these catalysts. A systematic study of these catalysts in the alkylation of aromatics such as benzene and toluene has been reported (201). [Pg.564]

The inactivity of pure anhydrous Lewis acid haUdes in Friedel-Crafts polymerisation of olefins was first demonstrated in 1936 (203) it was found that pure, dry aluminum chloride does not react with ethylene. Subsequentiy it was shown (204) that boron ttifluoride alone does not catalyse the polymerisation of isobutylene when kept absolutely dry in a vacuum system. However, polymers form upon admission of traces of water. The active catalyst is boron ttifluoride hydrate, BF H20, ie, a conjugate protic acid H" (BF20H) . [Pg.564]

Metal Alibis and Alkoxides. Metal alkyls (eg, aluminum boron, sine alkyls) are fairly active catalysts. Hyperconjugation with the electron-deficient metal atom, however, tends to decrease the electron deficiency. The effect is even stronger in alkoxides which are, therefore, fairly weak Lewis acids. The present discussion does not encompass catalyst systems of the Ziegler-Natta type (such as AIR. -H TiCl, although certain similarities with Friedel-Crafts systems are apparent. [Pg.564]

Solid Superacids. Most large-scale petrochemical and chemical industrial processes ate preferably done, whenever possible, over soHd catalysts. SoHd acid systems have been developed with considerably higher acidity than those of acidic oxides. Graphite-intercalated AlCl is an effective sohd Friedel-Crafts catalyst but loses catalytic activity because of partial hydrolysis and leaching of the Lewis acid halide from the graphite. Aluminum chloride can also be complexed to sulfonate polystyrene resins but again the stabiUty of the catalyst is limited. [Pg.565]

Cationic polymerization of coal-tar fractions has been commercially achieved through the use of strong protic acids, as well as various Lewis acids. Sulfuric acid was the first polymerization catalyst (11). More recent technology has focused on the Friedel-Crafts polymerization of coal fractions to yield resins with higher softening points and better color. Typical Lewis acid catalysts used in these processes are aluminum chloride, boron trifluoride, and various boron trifluoride complexes (12). Cmde feedstocks typically contain 25—75% reactive components and may be refined prior to polymerization (eg, acid or alkali treatment) to remove sulfur and other undesired components. Table 1 illustrates the typical components found in coal-tar fractions and their corresponding properties. [Pg.351]

Another group of isoprene polymerization catalysts is based on alanes and TiCl. In place of alkyl aluminum, derivatives of AlH (alanes) are used and react with TiCl to produce an active catalyst for the polymerization of isoprene. These systems are unique because no organometaHic compound is involved in producing the active species from TiCl. The substituted alanes are generally complexed with donor molecules of the Lewis base type, and they are Hquids or soHds that are soluble in aromatic solvents. The performance of catalysts prepared from AlHCl20(C2H )2 with TiCl has been reported (101). [Pg.467]

Dicyclopentadiene is also polymerized with tungsten-based catalysts. Because the polymerization reaction produces heavily cross-Unked resins, the polymers are manufactured in a reaction injection mol ding (RIM) process, in which all catalyst components and resin modifiers are slurried in two batches of the monomer. The first batch contains the catalyst (a mixture of WCl and WOCl, nonylphenol, acetylacetone, additives, and fillers the second batch contains the co-catalyst (a combination of an alkyl aluminum compound and a Lewis base such as ether), antioxidants, and elastomeric fillers (qv) for better moldabihty (50). Mixing two Uquids in a mold results in a rapid polymerization reaction. Its rate is controlled by the ratio between the co-catalyst and the Lewis base. Depending on the catalyst composition, solidification time of the reaction mixture can vary from two seconds to an hour. Similar catalyst systems are used for polymerization of norbomene and for norbomene copolymerization with ethyhdenenorbomene. [Pg.431]

Idemitsu Process. Idemitsu built a 50 t x 10 per year plant at Chiba, Japan, which was commissioned in Febmary of 1989. In the Idemitsu process, ethylene is oligomerised at 120°C and 3.3 MPa (33 atm) for about one hour in the presence of a large amount of cyclohexane and a three-component catalyst. The cyclohexane comprises about 120% of the product olefin. The catalyst includes sirconium tetrachloride, an aluminum alkyl such as a mixture of ethylalurninumsesquichloride and triethyl aluminum, and a Lewis base such as thiophene or an alcohol such as methanol (qv). This catalyst combination appears to produce more polymer (- 2%) than catalysts used in other a-olefin processes. The catalyst content of the cmde product is about 0.1 wt %. The catalyst is killed by using weak ammonium hydroxide followed by a water wash. Ethylene and cyclohexane are recycled. Idemitsu s basic a-olefin process patent (9) indicates that linear a-olefin levels are as high as 96% at C g and close to 100% at and Cg. This is somewhat higher than those produced by other processes. [Pg.440]

Lewis acids, such as the haUde salts of the alkaline-earth metals, Cu(I), Cu(II), 2inc, Fe(III), aluminum, etc, are effective catalysts for this reaction (63). The ammonolysis of polyamides obtained from post-consumer waste has been used to cleave the polymer chain as the first step in a recycle process in which mixtures of nylon-6,6 and nylon-6 can be reconverted to diamine (64). The advantage of this approach Hes in the fact that both the adipamide [628-94-4] and 6-aminohexanoamide can be converted to hexarnethylenediarnine via their respective nitriles in a conventional two-step process in the presence of the diamine formed in the original ammonolysis reaction, thus avoiding a difficult and cosdy separation process. In addition, the mixture of nylon-6,6 and nylon-6 appears to react faster than does either polyamide alone. [Pg.225]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]

It is isoelectronic and isostmctural with the aluminum sandwich ion [i (9y y (9-3,3 -Al(3,l,2-AlC2B2H22)2]A shown iu Figure 26a. TThe siUcon is Tj -bonded iu unshpped fashion to the C2B2 faces of two dicarboUide cages. TThis bis-dicarboUide sUicon sandwich also forms adducts of a variety of stmctural types with Lewis bases such as pyridine and trimethylphosphine. [Pg.251]

Complex Formation. B-Ttichlorobora2iQe was reported to readily form crystalline adducts of uncertain stmcture with pyridine (131). The Lewis acids aluminum tribromide or gallium trichloride form 1 1 adducts with hexamethylbota2iQe (eq. 36) ia which the metal atom coordinates with a nitrogen with loss of planarity of the ring (132,133). [Pg.266]

Zinc chloride is a Lewis acid catalyst that promotes cellulose esterification. However, because of the large quantities required, this type of catalyst would be uneconomical for commercial use. Other compounds such as titanium alkoxides, eg, tetrabutoxytitanium (80), sulfate salts containing cadmium, aluminum, and ammonium ions (81), sulfamic acid, and ammonium sulfate (82) have been reported as catalysts for cellulose acetate production. In general, they require reaction temperatures above 50°C for complete esterification. Relatively small amounts (<0.5%) of sulfuric acid combined with phosphoric acid (83), sulfonic acids, eg, methanesulfonic, or alkyl phosphites (84) have been reported as good acetylation catalysts, especially at reaction temperatures above 90°C. [Pg.253]

Addition Chlorination. Chlorination of olefins such as ethylene, by the addition of chlorine, is a commercially important process and can be carried out either as a catalytic vapor- or Hquid-phase process (16). The reaction is influenced by light, the walls of the reactor vessel, and inhibitors such as oxygen, and proceeds by a radical-chain mechanism. Ionic addition mechanisms can be maximized and accelerated by the use of a Lewis acid such as ferric chloride, aluminum chloride, antimony pentachloride, or cupric chloride. A typical commercial process for the preparation of 1,2-dichloroethane is the chlorination of ethylene at 40—50°C in the presence of ferric chloride (17). The introduction of 5% air to the chlorine feed prevents unwanted substitution chlorination of the 1,2-dichloroethane to generate by-product l,l,2-trichloroethane. The addition of chlorine to tetrachloroethylene using photochemical conditions has been investigated (18). This chlorination, which is strongly inhibited by oxygen, probably proceeds by a radical-chain mechanism as shown in equations 9—13. [Pg.508]

Dehydrochlorination of chlorinated derivatives such as 1,1,2-trichloroethane may be carried out with a variety of catalytic materials, including Lewis acids such as aluminum chloride. Refluxing 1,1,2-trichlorethane with aqueous calcium hydroxide or sodium hydroxide produces 1,1-dichloroethylene in good yields (22), although other bases such as magnesium hydroxide have been reported (23). Dehydrochlorination of the 1,1,1-trichloroethane isomer with catalytic amounts of a Lewis acid also yields 1,1-dichloroethylene. Other methods to dehydrochlorinate 1,1,1-trichloroethane include thermal dehydrochlorination (24) and by gas-phase reaction over an alumina catalyst or siUca catalyst (25). [Pg.509]

Continuous chlorination of benzene at 30—50°C in the presence of a Lewis acid typically yields 85% monochlorobenzene. Temperatures in the range of 150—190°C favor production of the dichlorobenzene products. The para isomer is produced in a ratio of 2—3 to 1 of the ortho isomer. Other methods of aromatic ring chlorination include use of a mixture of hydrogen chloride and air in the presence of a copper—salt catalyst, or sulfuryl chloride in the presence of aluminum chloride at ambient temperatures. Free-radical chlorination of toluene successively yields benzyl chloride, benzal chloride, and benzotrichloride. Related chlorination agents include sulfuryl chloride, tert-huty hypochlorite, and /V-ch1orosuccinimide which yield benzyl chloride under the influence of light, heat, or radical initiators. [Pg.510]

Dichloroethane is produced commercially from hydrogen chloride and vinyl chloride at 20—55°C ia the presence of an aluminum, ferric, or 2iac chloride catalyst (8,9). Selectivity is nearly stoichiometric to 1,1-dichloroethane. Small amounts of 1,1,3-tfichlorobutane may be produced. Unreacted vinyl chloride and HCl exit the top of the reactor, and can be recycled or sent to vent recovery systems. The reactor product contains the Lewis acid catalyst and must be separated before distillation. Spent catalyst may be removed from the reaction mixture by contacting with a hydrocarbon or paraffin oil, which precipitates the metal chloride catalyst iato the oil (10). Other iaert Hquids such as sdoxanes and perfluorohydrocarbons have also been used (11). [Pg.6]


See other pages where Lewis aluminum is mentioned: [Pg.76]    [Pg.481]    [Pg.507]    [Pg.197]    [Pg.234]    [Pg.508]    [Pg.551]    [Pg.560]    [Pg.561]    [Pg.564]    [Pg.564]    [Pg.163]    [Pg.244]    [Pg.449]    [Pg.15]    [Pg.437]    [Pg.146]    [Pg.30]    [Pg.183]    [Pg.250]    [Pg.250]    [Pg.531]    [Pg.38]    [Pg.53]    [Pg.481]   
See also in sourсe #XX -- [ Pg.412 ]

See also in sourсe #XX -- [ Pg.403 ]




SEARCH



Aluminum Lewis acidity

Aluminum chloride : Lewis acid catalyst

Aluminum compounds Lewis acid catalyzed

Aluminum compounds Lewis acid complexes

Aluminum fluoride Lewis acid

Aluminum trichloride Lewis structure

Aluminum, trimethylcomplex with benzophenone role of Lewis acid

Cycloaddition Aluminum Lewis acid-catalyzed

Hydride, aluminum Lewis acidity

Lewis acid, Bulky aluminum

Lewis acids aluminum chloride

Lewis acids menthol-aluminum

Lewis aluminum, chiral

Polymer-Supported Aluminum Lewis Acids

© 2024 chempedia.info