Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum compounds Lewis acid complexes

Complementary to the acylation of enolate anions is the acid-catalyzed acylation of the corresponding enols, where the regiochemistry of acylation can vary from that observed in base-catalyzed reactions. Although the reaction has been studied extensively in simple systems, it has not been widely used in the synthesis of complex molecules. The catalysts most frequently employed are boron trifluoride, aluminum chloride and some proton acids, and acid anhydrides are the most frequently used acylating agents. Reaction is thought to involve electrophilic attack on the enol of the ketone by a Lewis acid complex of the anhydride (Scheme 58). In the presence of a proton acid, the enol ester is probably the reactive nucleophile. In either case, the first formed 1,3-dicarbonyl compound is converted into its borofluoride complex, which may be decomposed to give the 3-d>ketone, sometimes isolated as its copper complex. [Pg.832]

Complexes of carbonyl oxygen with trivalent boron and aluminum compounds tend to adopt a geometry consistent with directional interaction with one of the oxygen lone pairs. Thus the C—O—M bonds tend to be in the trigonal (120°—140°) range and the boron or aluminum is usually close to the carbonyl plane.The structural specificity that is built into Lewis acid complexes can be used to advantage to achieve stereoselectivity in catalysis. For example, use of chiral ligands in conjunction with Lewis acids is frequently the basis for enantioselective catalysts. [Pg.355]

Neutral compounds such as boron trifluoride and aluminum chloride form Lewis acid-base complexes by accepting an electron pair from the donor molecule. The same functional groups that act as lone-pair donors to metal cations can form complexes with boron trifluoride, aluminum chloride, and related compounds. [Pg.234]

The mechanism of the cycloaddition reaction of benzaldehyde 2a with Danishefsky s diene 3a catalyzed by aluminum complexes has been investigated theoretically using semi-empirical calculations [14]. It was found that the reaction proceeds as a step-wise cycloaddition reaction with the first step being a nucleophilic-like attack of Danishefsky s diene 2a on the coordinated carbonyl compound leading to an aldol-like intermediate which is stabilized by interaction of the cation with the oxygen atom of the Lewis acid. The next step is the ring-closure step, giving the cycloaddition product. [Pg.159]

Thermolysis rates are enhanced substantially by the presence of certain Lewis acids (e.g. boron and aluminum halides), and transition metal salts (e.g. Cu ", Ag1).46 There is also evidence that complexes formed between azo-compounds and Lewis acids (e.g. ethyl aluminum scsquichloridc) undergo thermolysis or photolysis to give complexed radicals which have different specificity to uncomplexed radicals.81 83... [Pg.73]

Several aluminum- and titanium-based compounds have been supported on silica and alumina [53]. Although silica and alumina themselves catalyze cycloaddition reactions, their catalytic activity is greatly increased when they complex a Lewis acid. Some of these catalysts are among the most active described to date for heterogeneous catalysis of the Diels-Alder reactions of carbonyl-containing dienophiles. The Si02-Et2AlCl catalyst is the most efficient and can be... [Pg.115]

This finding is also in agreement with another three-component Michael/aldol addition reaction reported by Shibasaki and coworkers [14]. Here, as a catalyst the chiral AlLibis[(S)-binaphthoxide] complex (ALB) (2-37) was used. Such hetero-bimetallic compounds show both Bronsted basicity and Lewis acidity, and can catalyze aldol [15] and Michael/aldol [14, 16] processes. Reaction of cyclopentenone 2-29b, aldehyde 2-35, and dibenzyl methylmalonate (2-36) at r.t. in the presence of 5 mol% of 2-37 led to 3-hydroxy ketones 2-38 as a mixture of diastereomers in 84% yield. Transformation of 2-38 by a mesylation/elimination sequence afforded 2-39 with 92 % ee recrystallization gave enantiopure 2-39, which was used in the synthesis of ll-deoxy-PGFla (2-40) (Scheme 2.8). The transition states 2-41 and 2-42 illustrate the stereochemical result (Scheme 2.9). The coordination of the enone to the aluminum not only results in its activation, but also fixes its position for the Michael addition, as demonstrated in TS-2-41. It is of importance that the following aldol reaction of 2-42 is faster than a protonation of the enolate moiety. [Pg.53]

There can be little doubt that the active species involved in most or even all of the various combinations described in Section II is HNi(L)Y (see below), because the different catalysts prepared by activating the nickel with Lewis acids have been shown to produce, under comparable conditions, dimers and codimers which have not only identical structures but identical compositions. On modification of these catalysts by phosphines, the composition of dimers and codimers changes in a characteristic manner independent of both the method of preparation and the nickel compound (2, 4, 7, 16, 17, 26, 29, 42, 47, 76). Similar catalysts are formed when organometallic or zero-valent nickel complexes are activated with strong Lewis acids other than aluminum halides or alkylaluminum halides, e.g., BFS. [Pg.114]

Several authors have studied the reaction products in the Lewis acid catalyzed decomposition of phenyl and alkyl azides.179-185 Hoegerlee and Butler have found that phenyl azide forms a hydrocarbon-soluble complex at —70° with triethylaluminum, diethylchloroaluminum, and ethyldichloro-aluminum. 1 Upon warming to room temperature, this complex slowly decomposes into an intermediate phenylimine-aluminum compound (25) which then rearranges into a variety of amidoalkylaluminum reaction products (RP) (eq 4). [Pg.7]

Synthetic routes include anionic, cationic, zwitterionic, and coordination polymerization. A wide range of organometallic compounds has been proven as effective initiators/catalysts for ROP of lactones Lewis acids (e.g., A1C13, BF3, and ZnCl2) [150], alkali metal compounds [160], organozinc compounds [161], tin compounds of which stannous octoate [also referred to as stannous-2-ethylhexanoate or tin(II) octoate] is the most well known [162-164], organo-acid rare earth compounds such as lanthanide complexes [165-168], and aluminum alkoxides [169]. Stannous-2-ethylhexanoate is one of the most extensively used initiators for the coordination polymerization of biomaterials, thanks to the ease of polymerization and because it has been approved by the FDA [170]. [Pg.80]


See other pages where Aluminum compounds Lewis acid complexes is mentioned: [Pg.197]    [Pg.24]    [Pg.197]    [Pg.256]    [Pg.152]    [Pg.840]    [Pg.73]    [Pg.87]    [Pg.2]    [Pg.81]    [Pg.46]    [Pg.17]    [Pg.213]    [Pg.234]    [Pg.271]    [Pg.289]    [Pg.98]    [Pg.652]    [Pg.139]    [Pg.10]    [Pg.48]    [Pg.50]    [Pg.170]    [Pg.174]    [Pg.357]    [Pg.597]    [Pg.14]    [Pg.42]    [Pg.106]    [Pg.122]    [Pg.68]    [Pg.8]    [Pg.52]    [Pg.89]    [Pg.324]   


SEARCH



Aluminum complex compounds

Aluminum complexation

Lewis acid complexation

Lewis acid complexes

Lewis aluminum

Lewis complexed

© 2024 chempedia.info