Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride, aluminum Lewis acidity

Brown, H. C., The Reactions of Alkali Metal Hydrides and Boro-hydrides with Lewis Acids of Boron and Aluminum, Congr. Lect., 17th Int. Congr. Pure Appl. Chem. p. 167. Butterworths, London, 1960. [Pg.19]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]

The aldehyde or ketone, when treated with aluminum triisopropoxide in isopropanol as solvent, reacts via a six-membered cyclic transition state 4. The aluminum center of the Lewis-acidic reagent coordinates to the carbonyl oxygen, enhancing the polar character of the carbonyl group, and thus facilitating the hydride transfer from the isopropyl group to the carbonyl carbon center. The intermediate mixed aluminum alkoxide 5 presumably reacts with the solvent isopropanol to yield the product alcohol 3 and regenerated aluminum triisopropoxide 2 the latter thus acts as a catalyst in the overall process ... [Pg.199]

Reduction Conversion of Nitriles into Amines Reduction of a nitrile with LiAIH4 gives a primary amine, RNH . The reaction occurs by nucleophilic addition of hydride ion to the polar C=N bond, yielding an imine anion, which still contains a C=N bond and therefore undergoes a second nucleophilic addition of hydride to give a dianion. Both monoanion and dianion intermediates are undoubtedly stabilized by Lewis acid-base complexafion to an aluminum species, facilitating the second addition that would otherwise be difficult Protonation of the dianion by addition of water in a subsequent step gives the amine. [Pg.769]

Because hydride ion is a base as well as a nucleophile, the actual nucleophilic acyl substitution step takes place on the carboxylate ion rather than on the free carboxylic acid and gives a high-energy dianion intermediate. In this intermediate, the two oxygens are undoubtedly complexed to a Lewis acidic aluminum species. Thus, the reaction is relatively difficult, and acid reductions require higher temperatures and extended reaction times. [Pg.799]

The synthesis of the right-wing sector, compound 4, commences with the prochiral diol 26 (see Scheme 4). The latter substance is known and can be conveniently prepared in two steps from diethyl malonate via C-allylation, followed by reduction of the two ethoxy-carbonyl functions. Exposure of 26 to benzaldehyde and a catalytic amount of camphorsulfonic acid (CSA) under dehydrating conditions accomplishes the simultaneous protection of both hydroxyl groups in the form of a benzylidene acetal (see intermediate 32, Scheme 4). Interestingly, when benzylidene acetal 32 is treated with lithium aluminum hydride and aluminum trichloride (1 4) in ether at 25 °C, a Lewis acid induced reduction takes place to give... [Pg.197]

The mechanism by which the Group III hydrides effect reduction involves activation of the carbonyl group by coordination with a metal cation and nucleophilic transfer of hydride to the carbonyl group. Hydroxylic solvents also participate in the reaction,59 and as reduction proceeds and hydride is transferred, the Lewis acid character of boron and aluminum becomes a factor. [Pg.396]

Closely related to, but distinct from, the anionic boron and aluminum hydrides are the neutral boron (borane, BH3) and aluminum (alane, A1H3) hydrides. These molecules also contain hydrogen that can be transferred as hydride. Borane and alane differ from the anionic hydrides in being electrophilic species by virtue of the vacant p orbital and are Lewis acids. Reduction by these molecules occurs by an intramolecular hydride transfer in a Lewis acid-base complex of the reactant and reductant. [Pg.400]

Secondary Alkyl Alcohols. Treatment of secondary alkyl alcohols with tri-fluoroacetic acid and organosilicon hydrides results only in the formation of the trifluoroacetate esters no reduction is reported to occur.1,2 Reduction of secondary alkyl alcohols does take place when very strong Lewis acids such as boron trifluoride126 129 or aluminum chloride136,146 are used. For example, treatment of a dichlo-romethane solution of 2-adamantanol and triethy lsilane (1.3 equivalents) with boron trifluoride gas at room temperature for 15 minutes gives upon workup a 98% yield of the hydrocarbon adamantane along with fluorotriethylsilane (Eq. 10).129... [Pg.14]

Other organometallic compounds of aluminum include the alkyl hydrides, R2A1H. Molecular association of these compounds leads to cyclic tetramers. When the dimeric and trimeric compounds are dissolved in a basic aprotic solvent, the aggregates separate as a result of formation of bonds between A1 and the unshared pair of electrons on the solvent molecule. Toward Lewis bases such as trimeth-ylamine, aluminum alkyls are strong Lewis acids (as are aluminum halides). [Pg.407]

Finally, Cristau and coworkers have reported on a quite efficient preparation of triphenylphosphine oxide (Figure 2.13) by a similar addition-elimination reaction of red phosphorus with iodobenzene in the presence of a Lewis acid catalyst followed by oxidation of an intermediate tetraarylphosphonium salt.42 This approach holds the potential for the preparation of a variety of triarylphosphine oxides without proceeding through the normally used Grignard reagent. Of course, a variety of approaches is available for the efficient reduction of phosphine oxides and quaternary phosphonium salts to the parent phosphine, including the use of lithium aluminum hydride,43 meth-ylpolysiloxane,44 trichlorosilane,45 and hexachlorodisilane.46... [Pg.34]

Some experimental evidences are in agreement with this proposed mechanism. For example, coordinating solvents like diethyl ether show a deactivating effect certainly due to competition with a Lewis base (149). For the same reason, poor reactivity has been observed for the substrates carrying heteroatoms when an aluminum-based Lewis acid is used. Less efficient hydrovinylation of electron-deficient vinylarenes can be explained by their weaker coordination to the nickel hydride 144, hence metal hydride addition to form key intermediate 146. Isomerization of the final product can be catalyzed by metal hydride through sequential addition/elimination, affording the more stable compound. Finally, chelating phosphines inhibit the hydrovinylation reaction. [Pg.320]

A boron analog - sodium borohydride - was prepared by reaction of sodium hydride with trimethyl borate [84 or with sodium fluoroborate and hydrogen [55], and gives, on treatment with boron trifluoride or aluminum chloride, borane (diborane) [86. Borane is a strong Lewis acid and forms complexes with many Lewis bases. Some of them, such as complexes with dimethyl sulfide, trimethyl amine and others, are sufficiently stable to have been made commercially available. Some others should be handled with precautions. A spontaneous explosion of a molar solution of borane in tetrahydrofuran stored at less than 15° out of direct sunlight has been reported [87]. [Pg.14]

Although several Lewis Acids were evaluated, including titanium(lV) chloride, aluminum(lll) chloride and tin(lV) chloride, ferric(lll) chloride proved to be the most effective co-catalyst. We believe that in the presence of a Lewis Acid, the rate of j3-palladium hydride elimination (H-Pd-X) from the -allyl carbomethoxy palladium complex 4 can be enhanced. A good leaving group such as iodide attached to -allyl carbomethoxy palladium complex 4 would facilitate iodopalladium hydride elimination to selectively form methyl, -pentadienoate (Equation 11.). [Pg.88]

The complexation, proposed by R. K. Brown and coworkers (Refs. 199-207), of either one of the ring-oxygen atoms by aluminum chloride is reproduced here as a simplification. It seems evident that the intimate mechanism does not imply (i) attack by aluminum chloride, and then (ii) reduction by lithium aluminum hydride actually, the mixed hydride is the reactive species (Ref. 210), and its identity depends on the ratio between the Lewis acid and the hydride (see, for instance, Refs. 211 and 212, and references cited therein, for a discussion of the nature of mixed hydrides). [Pg.123]

A l 1 mixture of lithium aluminum hydride and aluminum chloride accomplishes two transformations in the second reaction. A combination of reductive and Lewis-acid characteristics make this the reagent of choice. [Pg.220]

In the final step, lithium aluminum hydride and sulfuric acid react to give a Lewis-acidic reducing agent. [Pg.226]

Aluminum chloride coordinates with 1-chloropropane to give a Lewis acid/Lewis base complex, which can be attacked by benzene to yield propylbenzene or can undergo an intramolecular hydride shift to produce isopropyl cation. Isopropylbenzene arises by reaction of isopropyl cation with... [Pg.280]


See other pages where Hydride, aluminum Lewis acidity is mentioned: [Pg.887]    [Pg.38]    [Pg.608]    [Pg.156]    [Pg.105]    [Pg.24]    [Pg.33]    [Pg.396]    [Pg.46]    [Pg.95]    [Pg.289]    [Pg.116]    [Pg.75]    [Pg.365]    [Pg.260]    [Pg.422]    [Pg.10]    [Pg.50]    [Pg.141]    [Pg.523]    [Pg.135]    [Pg.136]    [Pg.911]    [Pg.112]    [Pg.887]    [Pg.126]   
See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Hydride acidity

Lewis aluminum

© 2024 chempedia.info