Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead, mass spectrometry analytical methods

Specifically for triazines in water, multi-residue methods incorporating SPE and LC/MS/MS will soon be available that are capable of measuring numerous parent compounds and all their relevant degradates (including the hydroxytriazines) in one analysis. Continued increases in liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/API-MS/MS) sensitivity will lead to methods requiring no aqueous sample preparation at all, and portions of water samples will be injected directly into the LC column. The use of SPE and GC or LC coupled with MS and MS/MS systems will also be applied routinely to the analysis of more complex sample matrices such as soil and crop and animal tissues. However, the analyte(s) must first be removed from the sample matrix, and additional research is needed to develop more efficient extraction procedures. Increased selectivity during extraction also simplifies the sample purification requirements prior to injection. Certainly, miniaturization of all aspects of the analysis (sample extraction, purification, and instrumentation) will continue, and some of this may involve SEE, subcritical and microwave extraction, sonication, others or even combinations of these techniques for the initial isolation of the analyte(s) from the bulk of the sample matrix. [Pg.445]

The development of a robust analytical method is a complex issue. The residue analyst has available a vast array of techniques to assist in this task, but there are a number of basic rules that should be followed to produce a reliable method. The intention of this article is to provide the analyst with ideas from which a method can be constructed by considering each major component of the analytical method (sample preparation, extraction, sample cleanup, and the determinative step), and to suggest modern techniques that can be used to develop an effective and efficient overall approach. The latter portion emphasizes mass spectrometry (MS) since the current trend for pesticide residue methods is leading to MS becoming the method of choice for simultaneous quantitation and confirmation. This article also serves to update previous publications on similar topics by the authors. ... [Pg.753]

The low concentrations of lead in plasma, relative to red blood cells, has made it extremely difficult to accurately measure plasma lead concentrations in humans, particularly at low PbB concentrations (i.e., less than 20 pg/dL). However, more recent measurements have been achieved with inductively coupled mass spectrometry (ICP-MS), which has a higher analytical sensitivity than earlier atomic absorption spectrometry methods. Using this analytical technique, recent studies have shown that plasma lead concentrations may correlate more strongly with bone lead levels than do PbB concentrations (Cake et al. 1996 Hemandez-Avila et al. 1998). The above studies were conducted in adults, similar studies of children have not been reported. [Pg.313]

However, IHC as a practical method continues to evolve with increasing demands for standardization, and for true quantification of protein analytes by weight, in the context of their cellular microenvironment. Further studies combining proteomics by mass spectrometry and IHC are likely to lead to the refinement of both methods in the analysis of FFPE tissues. The end result may be the creation of a broader field that defines and quantifies protein expression at a cellular level, incorporating the advantages of the wide spectrum of proteins demonstrable by mass spectrometry and the precise localization offered by IHC. [Pg.395]

In soft ionization methods the excess energy deposited onto the ionized molecule is very small and stable even-electron ions are formed. This leads to easy determination of the molecular weight of the analyte, but as fragmentation is absent or it occurs to a very low extent, structural information is missing in the mass spectrum. However, one can obtain structural information by causing ion fragmentation out of the source by means of tandem mass spectrometry experiments (see below). [Pg.47]

Nowadays, ESI is the leading member of the group of atmospheric pressure ionization (API) methods and the method of choice for liquid chromatography-mass spectrometry coupling (LC-MS, Chap. 12). [10-13] Currently, ESI and MALDI (Chap. 10) are the most commonly employed ionization methods and they opened doors to the widespread biological and biomedical application of mass spectrometry. [5,10,11,13-17] Moreover, ESI serves well for the analysis of ionic metal complexes [18,19] and other inorganic analytes. [20-22]... [Pg.441]

In the following discussion, three types of air pollutant analytical data will be examined using principal component analysis and the K-Nearest Neighbor (KNN) procedure. A set of Interlaboratory comparison data from X-ray emission trace element analysis, data from a comparison of two methods for determining lead In gasoline, and results from gas chromatography/mass spectrometry analysis for volatile organic compounds In ambient air will be used as Illustrations. [Pg.108]

An additional problem arises with the difficult analytical characterization of the cyclic peptide libraries. This is preferably performed by mass spectrometry, although there are limitations with the ionization method. In fact, FAB-MS leads to overexpression of hydro-phobic components by ion suppression, whereas in MALDI-MS preferentially hydrophilic... [Pg.512]

However, tandem mass spectrometry, as a separation technique, does have limitations. It cannot easily differentiate between isomeric and isobaric species, and, in complex matrices, the presence of components with a high surface activity can suppress the ionization of components with a lower surface activity, leading to the nondetection of analytes (66). Therefore, the combination of MS-MS with a readily available chromatographic separation method such as TLC affords analysts real benefits. [Pg.729]

Chemical and instrumental (e.g., chromatography and mass spectrometry) methods have provided valuable information that lead to the advancement of cheese science. However, these techniques suffer from one or more of the following problems (1) the extensive use of solvents and gases that are expensive and hazardous, (2) high costs, (3) the requirement of specific accessories for different analytes, (4) the requirement of extensive sample preparation to obtain pure and clean samples, and (5) labor-intensive operation. These disadvantages have prompted for the evaluation and adoption of new, rapid, and simple methods such as Fourier-transform infrared (FTIR) spectroscopy. Many books are available on the basics of FTIR spectroscopy and its applications (Burns and Ciurczak, 2001 Sun, 2009). FTIR spectroscopy monitors the vibrations... [Pg.196]

Regarding ozonation processes, the treatment with ozone leads to halogen-free oxygenated compounds (except when bromide is present), mostly aldehydes, carboxylic acids, ketoacids, ketones, etc. [189]. The evolution of analytical techniques and their combined use have allowed some researchers to identify new ozone by-products. This is the case of the work of Richardson et al. [189,190] who combined mass spectrometry and infrared spectroscopy together with derivatization methods. These authors found numerous aldehydes, ketones, dicarbonyl compounds, carboxylic acids, aldo and keto acids, and nitriles from the ozonation of Mississippi River water with 2.7-3 mg L 1 of TOC and pH about 7.5. They also identified by-products from ozonated-chlorinated (with chlorine and chloramine) water. In these cases, they found haloalkanes, haloalkenes, halo aldehydes, haloketones, haloacids, brominated compounds due to the presence of bromide ion, etc. They observed a lower formation of halocompounds formed after ozone-chlorine or chloramine oxidations than after single chlorination or chlorami-nation, showing the beneficial effect of preozonation. [Pg.57]


See other pages where Lead, mass spectrometry analytical methods is mentioned: [Pg.212]    [Pg.215]    [Pg.635]    [Pg.6]    [Pg.1357]    [Pg.278]    [Pg.1029]    [Pg.55]    [Pg.13]    [Pg.27]    [Pg.249]    [Pg.221]    [Pg.448]    [Pg.455]    [Pg.327]    [Pg.126]    [Pg.259]    [Pg.56]    [Pg.388]    [Pg.325]    [Pg.414]    [Pg.246]    [Pg.27]    [Pg.539]    [Pg.13]    [Pg.402]    [Pg.415]    [Pg.515]    [Pg.517]    [Pg.581]    [Pg.222]    [Pg.105]    [Pg.31]    [Pg.224]    [Pg.432]    [Pg.116]    [Pg.200]    [Pg.284]    [Pg.301]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Analyte mass spectrometry

Analytical methods mass spectrometry

Analytical methods spectrometry)

Lead, mass

Lead, mass spectrometry analytical

© 2024 chempedia.info