Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soft ionization methods

The study of metastable ions concerns substances that have been ionized by electrons and have undergone fragmentation. The stable molecular ions that are formed by soft ionization methods (chemical ionization. Cl field ionization, FI) need a boost of extra energy to make them fragment, but in such cases other methods of investigation than linked scanning are generally used. [Pg.237]

Low ionizing potentials or soft ionization methods are necessary to observe the parent ions in the mass spectra of many S-N compounds because of their facile thermal decomposition. Mass spectrometry has been used to investigate the thermal breakdown of S4N4 in connection with the formation of the polymer (SN). On the basis of the appearance potentials of various S Ny fragments, two important steps were identified ... [Pg.47]

Unfortunately, not every compound shows a molecular ion in its mass spectrum. Although M+ is usually easy to identify if it s abundant, some compounds, such as 2,2-dimelhylpropane, fragment so easily that no molecular ion is observed (Figure 12.3). In such cases, alternative "soft" ionization methods that do not use electron bombardment can prevent or minimize fragmentation. [Pg.411]

Most biochemical analyses by MS use either electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALD1), typically linked to a time-of-flight (TOF) mass analyzer. Both ESI and MALDl are "soft" ionization methods that produce charged molecules with little fragmentation, even with biological samples of very high molecular weight. [Pg.417]

Chapter 12, Structure Determination Mass Spectrometiy and Infrared Spectroscopy—A new Section 12.4 discusses mass spectrometry of biological molecules, focusing on time-of-flight instruments and soft ionization methods such as MAI.DI. [Pg.1337]

Electrospray is a soft-ionization method prodncing intact molecular species and structural information is not usually available. Electrospray sources are capable of producing structural information from cone-voltage fragmentation but these spectra are not always easily interpretable. Experimentally, the best solution is to use a mass spectrometer capable of MS-MS operation but this has not inconsequential financial implications. [Pg.180]

It is therefore not surprising that the interest in PyMS as a typing tool diminished at the turn of the twenty-first century and hence why taxonomists have turned to MS-based methods that use soft ionization methods such as electrospray ionization (ESI-MS) and matrix-assisted laser desorption ionization (MALDI MS). These methods generate information-rich spectra of metabolites and proteins, and because the molecular ion is seen, the potential for biomarker discovery is being realized. The analyses of ESI-MS and MALDI-MS data will still need chemometric methods, and it is hoped that researchers in these areas can look back and learn from the many PyMS studies where machine learning was absolutely necessary to turn the complex pyrolysis MS data into knowledge of bacterial identities. [Pg.334]

In soft ionization methods the excess energy deposited onto the ionized molecule is very small and stable even-electron ions are formed. This leads to easy determination of the molecular weight of the analyte, but as fragmentation is absent or it occurs to a very low extent, structural information is missing in the mass spectrum. However, one can obtain structural information by causing ion fragmentation out of the source by means of tandem mass spectrometry experiments (see below). [Pg.47]

Soft ionization methods can be classified into different groups (a) those occurring in the gas phase (b) spray ionization techniques (c) desorption ionization techniques. [Pg.47]

Field desorption (FD) was introduced by Beckey in 1969 [76]. FD was the first soft ionization method that could generate intact ions from nonvolatile compounds, such as small peptides [77]. The principal difference between FD and FI is the sample injection. Rather than being in the gas phase as in FI, analytes in FD are placed onto the emitter and desorbed from its surface. Application of the analyte onto the emitter can be performed by just dipping the activated emitter in a solution. The emitter is then introduced into the ion source of the spectrometer. The positioning of the emitter is cmcial for a successful experiment, and so is the temperature setting. In general, FI and FD are now replaced by more efficient ionization methods, such as MALDI and ESI. For a description of FD (and FI), see Reference 78. [Pg.27]

Stereochemical aspects in mass spectrometry have aroused more and more interest. El mass spectra of stereoisomers are practically indistinguishable. However, the use of soft ionization methods (chemical ionization, field ionization, etc.) accompanied by tandem mass spectrometry allows important and reliable conclusions on the molecular structures to be drawn. [Pg.146]

The soft ionization methods, which will be discussed later, most often produce a molecular ion in which a charge-carrying species is attached to the neutral molecule. Typically, an H+ is the attaching species. Many structural classes of compounds, however, show the strong tendency to scavenge and attach monovalent cations—in this case, Na+. [Pg.696]

A little recognized systematic error in the calculation of accurate masses of, for example, small radical cation molecular ions (as in electron ionization (El)) or protonated molecular ions (as seen in the soft ionization methods) is the fact that the electron has a small, but finite mass. The accurate masses of radical cations, in which a valence electron has been removed, of anions that have been created by capture of an electron, and of protonated species produced by soft ionization processes, should take into consideration this small mass difference [19]. For example, there is a small difference between the relative atomic mass of a neutral hydrogen atom and a proton. The accepted accurate mass of 1H° is 1.007825 Da. The accurate mass of 1H+ is 1.007276 Da. To be completely correct, expected accurate masses of protonated molecular ions, [M+H]+, produced by electrospray should be calculated using the mass of one H+, rather than all of neutral hydrogen atoms. Mamer and Lesimple do acknowledge, however, that, for large molecules, the error is of little consequence. [Pg.700]

The development of soft ionization methods (electrospray ionization and matrix-assisted laser desorption ionization, and others not discussed here) has contributed to the remarkable progress seen in mass spectrometry applied to biochemistry and molecular biology research progress, and is beginning to find applications in archaeology. [Pg.169]

Note At first sight, there is no difference whether Qi or Q3 is switched to RF-only for MS mode. However, for El it seems better to operate Q3 in RF-only mode. Otherwise, the ion source would effectively extend up to the entrance of Q3 making fragment ions more abundant due to elongated time for dissociations. Soft ionization methods do not show such differences. [Pg.152]

Nonetheless, during the first decades of analytical mass spectrometry low energy El spectra have been the only way to minimize fragmentation, and thereby to increase the relative intensity of a weak molecular ion peak. Nowadays, El mass spectra are preferably complemented with spectra obtained from so-called soft ionization methods (Chaps. 7-11). [Pg.199]

In El mass spectrometry, the molecular ion peak can be increased to a certain degree by application of reduced electron energy and lower ion source temperature (Chap. 5.1.5). However, there are compounds that thermally decompose prior to evaporation or where a stable molecular ion does not exist. The use of soft ionization methods is often the best way to cope with these problems. [Pg.263]

Identify the molecular ion This is an important inital step, because it is needed to derive the molecular composition (Chap. 6.6.4). If the El spectrum does not allow for the identification of the molecular ion, soft ionization methods should be employed in addition. [Pg.319]

Note It is commonplace to denote [Mh-H]" and [M-H]" ions as quasimolecular ions because these ions comprise the otherwise intact analyte molecule and are detected instead of a molecular ion when Cl or other soft ionization methods are employed. Usually, the term is also applied to [M-i-alkali] ions created by other soft ionization methods. [Pg.332]

High and in particular ultrahigh-resolution in combination with a soft ionization method such as ESI, MALDI, or FD presents another way to achieve the separation of the molecular species contained in a mixture. Given a sufficient level of resolution, isobaric ions are displayed separately in the range of their common nominal mass value (Chap. 3.3.2, 3.4). [Pg.490]

Concentrations of neuroactive steroids that are present in brain and plasma are normally very low. Therefore, several prepurification steps are generally required before analyzing these samples. It is necessary to improve detection limits and to introduce new methods of analyzing these samples directly from solution, without these labor-intensive and time-consuming prepurification procedures. Now, most neurosteroid analyses are performed by RIA or by GC/MS. The most sensitive GC/MS reported so far is GC/EC-NCI/MS, wherein MS in performed in the SIM mode. Neurosteroid sulfates can be directly analyzed by MS, without derivatization, by using soft ionization methods such as FAB and ESI. These methods are currently undergoing further refinement and development. [Pg.189]

The fast atom bombardment ionization (FAB) technique is a soft ionization method, typically requiring the use of a direct insertion probe for sample introduction in which a high energy beam of Xe atoms, Cs+ ions, or massive glycerol-NH4+ clusters sputter the sample and matrix from the probe surface (Figure 8). [Pg.683]

A considerable amount of information has been accumulated during the review period with respect to fragmentation studies of flavonoid aglycones and their glycosides using ionization techniques such as El and CID (Figure 2.17). Tandem mass spectrometry with soft ionization methods such as FAB, ESI, and APCI have been used for the structural characterization of a variety of flavonoids, and both deprotonation ° ° and... [Pg.94]

MS has a great potential to be established as a key method in almost all fields of IL research. In parhcular, soft ionization methods like ESI and APCl and to a lower extent MALDl MS are the methods of choice. Potential applications of MS lie, for example, in the analysis of reactions occurring in ILs, that... [Pg.391]

We will now concentrate upon some soft ionization methods — so called because they give rise mainly to the peak associated with the molecular ion and very little fragmentation. Another benefit of these techniques is that, unlike both EI and CI, they do not require the sample to be volatile and so permit the analysis of biomolecules, which are generally large, sensitive and polar. [Pg.125]

Analytical pyrolysis is defined as the characterization of a material or a chemical process by the instrumental analysis of its pyrolysis products (Ericsson and Lattimer, 1989). The most important analytical pyrolysis methods widely applied to environmental samples are Curie-point (flash) pyrolysis combined with electron impact (El) ionization gas chromatography/mass spectrometry (Cp Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS). In contrast to the fragmenting El ionization, soft ionization methods, such as field ionization (FI) and field desorption (FD) each in combination with MS, result in the formation of molecule ions either without, or with only very low, fragmentation (Lehmann and Schulten, 1976 Schulten, 1987 Schulten and Leinweber, 1996 Schulten et al., 1998). The molecule ions are potentially similar to the original sample, which makes these methods particularly suitable to the investigation of complex environmental samples of unknown composition. [Pg.540]


See other pages where Soft ionization methods is mentioned: [Pg.4]    [Pg.160]    [Pg.564]    [Pg.1029]    [Pg.329]    [Pg.719]    [Pg.9]    [Pg.169]    [Pg.53]    [Pg.331]    [Pg.460]    [Pg.481]    [Pg.79]    [Pg.100]    [Pg.555]    [Pg.21]    [Pg.83]    [Pg.602]    [Pg.49]    [Pg.444]    [Pg.62]    [Pg.72]   
See also in sourсe #XX -- [ Pg.27 ]

See also in sourсe #XX -- [ Pg.2 , Pg.9 , Pg.50 , Pg.467 ]




SEARCH



Ionization methods soft’ techniques

Mass spectrometry soft-ionization methods

Soft ionization

Soft ionization method coupling

© 2024 chempedia.info