Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser absorption spectrometry

J. Koch, A. Zybin and K. Niemax, Narrow and broad band diode laser absorption spectrometry - concepts, limitations and applications, Spectro-chim. Acta. Part B, 57, 2002, 1547-1561. [Pg.47]

Measurement of Atmospheric Gases by Laser Absorption Spectrometry... [Pg.272]

The advantages of Tunable Diode Laser Absorption Spectrometry (TDLAS) for measuring trace atmospheric gases are universality positive identification good sensitivity and rapid response time. An instrument is described which can measure two gases simultaneously under automatic computer control with detection limits better than 100 parts per trillion and with response times better than 5 minutes. Procedures have been established for the measurement of NO N0a, HNOa NH3 HbQb and HCHO. These species have been measured under a variety of conditions in smog chambers and in ambient air from mobile laboratories and from aircraft. [Pg.272]

Organochlorinated Tunable dye laser absorption spectrometry Water Detection limits 10 -10 V99 ... [Pg.3609]

Middaugh, J.E. (2014) The Study of Bimolecular Radical Reactions Using a Novel Time-resolved Photoionization Time-of-flight Mass Spectrometry and Laser Absorption Spectrometry Apparatus. PhD Thesis, Massachusetts Institute of Technology. [Pg.152]

P. Ljung, O. Axner Measurements of rubidium in standard reference samples by wavelength-modulation diode laser absorption spectrometry in a graphite furnace. Spectrochim. Acta B 52, 305 (1997)... [Pg.507]

Laser absorption spectrometry Cormnercial, limited Broader use by new laser wavelengths Ovens, burners, gases n.d. [Pg.669]

Laser absorption spectrometry Specific, ease of interfacing, extreme sampling conditions Availability of laser wavelengths, spectral interferences... [Pg.670]

A number of other laser spectroscopic techniques are of interest but space does not permit their discussion. A few specialized methods of detecting laser absorption worthy of mention include multiphoton ionization/mass spectrometry (28), which is extremely sensitive as well as mass selective for gas-phase systems optically detected magnetic resonance (29) laser intracavity absorption, which can be extremely sensitive and is applicable to gases or solutions (30) thermal blooming, which is also applicable to very weak absorbances in gases or liquids (31) and... [Pg.468]

For the majority of applications, the sample is taken into solution and introduced into the plasma as an aerosol in the argon stream. The sample solution is pumped by a peristaltic pump at a fixed rate and converted into an aerosol by a nebulizer (see atomic absorption spectrometry). Various designs of nebulizer are in use, each having strengths and weaknesses. The reader is directed to the more specialist texts for a detailed consideration of nebulizers. There is an obvious attraction in being able to handle a solid directly, and sample volatilization methods using electric spark ablation, laser ablation and electrothermal volatilization have also been developed. [Pg.302]

Abstract Mobile Au in soil has been postulated for many years. It has been used by the mineral exploration industry in areas of transported overburden as a vector towards buried deposits. Until now, the nature of this mobile Au has not been known or investigated. Soil samples from a colluvial area above the Bounty Deposit (Yilgarn Craton, Western Australia) investigated by analytical techniques including laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and synchrotron x-ray fluorescence (SXRF) combined with X-ray absorption spectrometry (XAS) have allowed us to map the invisible Au in these soils and suggests that at least some of it occurs in an ionic form. [Pg.67]

CONTENTS Preface, Joseph Sneddon. Analyte Excitation Mechanisms in the Inductively Coupled Plasma, Kuang-Pang Li and J.D. Winefordner. Laser-Induced Ionization Spectrometry, Robert B. Green and Michael D. Seltzer. Sample Introduction in Atomic Spectroscopy, Joseph Sneddon. Background Correction Techniques in Atomic Absorption Spectrometry, G. Delude. Flow Injection Techniques for Atomic Spectrometry, Julian F. Tyson. [Pg.268]

The Frankfort LPA instrument (51-53) departs from both of these instruments in two principal ways it achieves the necessary path length within a 6-m folded-path cell, and it rapidly scans a narrow-band frequency-doubled dye laser across the spectral region of interest (the Qi(2) line group) in a process sometimes called differential optical absorption spectrometry (DOAS). The scanning rate is sufficient to ensure that the observed air volume is chemically and physically stationary during each scan (the baseline standard deviation is less than 2 x 10-4 for a 0.2-ms scan). The laser output is actively feedback-stabilized to provide a flat spectral baseline, and a detection limit better than 10"5 in optical density has been claimed. A summary of published LPA configurations is given in Table II. [Pg.353]

Atomic Fluorescence Spectrometry. A spectroscopic technique related to some of the types mentioned above is atomic fluorescence spectrometry (AFS). Like atomic absorption spectrometry (AAS), AFS requires a light source separate from that of the heated flame cell. This can be provided, as in AAS, by individual (or multielement lamps), or by a continuum source such as xenon arc or by suitable lasers or combination of lasers and dyes. The laser is still pretty much in its infancy but it is likely that future development will cause the laser, and consequently the many spectroscopic instruments to which it can be adapted to, to become increasingly popular. Complete freedom of wavelength selection still remains a problem. Unlike AAS the light source in AFS is not in direct line with the optical path, and therefore, the radiation emitted is a result of excitation by the lamp or laser source. [Pg.376]

AMS = accelerated mass spectroscopy EDTA = ethylene diamine tetra acetic acid GFAAS = graphite furnace atomic absorption spectrometry ICP-AES = inductively coupled plasma - atomic emission spectroscopy NAA = neutron activation analysis ETAAS = electrothermal atomic absorption spectrometry SEC/ICP-MS = size-exclusion chromatography/ICP-AES/mass spectrometry HLPC/ICP-AES = high-performance liquid chromatography/ICP-AES LAMMA = laser ablation microprobe mass analysis NA = not applicable ppq = parts per quadrillion... [Pg.261]

Variable recovery is a principal cause of non-equivalence of data and there is no straightforward solution to this problem [26], Artificially made reference samples or pure compounds added to test material cannot be used for estimations of recovery of analytes. Direct speciation analysis from the solid sample [27] is not feasible at present, although analytical methods are appearing that could be useful in the future (X-ray absorption spectrometry, laser mass spectrometry, static secondary ion mass spectrometry). [Pg.41]

The Final Analysis. The SEM analysis of the liquid extrusion shows that sulfur is present in quantities much greater than the monosulfide of calcium could provide. The most probable explanation is that part of the sulfur is present in polysulfide anions, as the infiltration conditions appear to favor their formation (18). A sample of the yellow solution obtained by leaching fragments under nitrogen was therefore analyzed by laser Raman spectrometry to determine if the absorption... [Pg.99]

Whatever the analytical method and the determinand may be, the greatest care should be devoted to the proper selection and use of internal standards, careful preparation of blanks and adequate calibration to avoid serious mistakes. Today the Antarctic investigator has access to a multitude of analytical techniques, the scope, detection power and robustness of which were simply unthinkable only two decades ago. For chemical elements they encompass Atomic Absorption Spectrometry (AAS) [with Flame (F) and Electrothermal Atomization (ETA) and Hydride or Cold Vapor (HG or CV) generation]. Atomic Emission Spectrometry (AES) [with Inductively Coupled Plasma (ICP), Spark (S), Flame (F) and Glow Discharge/Hollow Cathode (HC/GD) emission sources], Atomic Fluorescence Spectrometry (AFS) [with HC/GD, Electrodeless Discharge (ED) and Laser Excitation (LE) sources and with the possibility of resorting to the important Isotope... [Pg.13]


See other pages where Laser absorption spectrometry is mentioned: [Pg.433]    [Pg.260]    [Pg.272]    [Pg.433]    [Pg.260]    [Pg.272]    [Pg.455]    [Pg.141]    [Pg.552]    [Pg.95]    [Pg.434]    [Pg.559]    [Pg.258]    [Pg.335]    [Pg.27]    [Pg.361]    [Pg.163]    [Pg.434]    [Pg.99]    [Pg.21]   
See also in sourсe #XX -- [ Pg.280 , Pg.282 , Pg.283 , Pg.284 , Pg.285 , Pg.286 , Pg.287 ]




SEARCH



Absorption spectrometry

Diode laser atomic absorption spectrometry

Formation laser absorption spectrometry

Laser absorption

Laser spectrometry

Tunable diode laser absorption spectrometry

© 2024 chempedia.info