Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotope dilution spectrometry

Two other techniques that depend only on base SI units are coulometry and isotope-dilution mass spectrometry. Coulometry is discussed in Chapter 11. Isotope-dilution mass spectroscopy is beyond the scope of an introductory text, however, the list of suggested readings includes a useful reference. [Pg.235]

Por a review of isotope dilution mass spectrometry see the following article. [Pg.271]

Eassett, J. D. Paulsen, P. J. Isotope Dilution Mass Spectrometry for Accurate Elemental Analysis, Anal. Chem. 1989, 61, 643A-649A. [Pg.271]

IKES. ion kinetic energy spectroscopy IRMS. isotope ratio mass spectrometry ISDMS. isotope dilution mass spectrometry ITMS. ion trap mass spectrometry LA. laser ablation... [Pg.446]

ICPMS is uniquely able to borrow a quantitation technique from molecular mass spectrometry. Use of the isotope dilution technique involves the addition of a spike having a different isotope ratio to the sample, which has a known isotope ratio. This is usefiil for determining the concentration of an element in a sample that must undergo some preparation before analysis, or for measuring an element with high precision and accuracy. ... [Pg.630]

Dizdaroglu, M. (1993). Quantitative determination of oxidative base damage in DNA by stable isotope-dilution mass spectrometry. FEBS Lett. 315, 1-6. [Pg.211]

Separation and detection methods The common methods used to separate the Cr(III)/(VI) species are solvent extraction, chromatography and coprecipitation. In case of Cr(VI) from welding fumes trapped on a filter, a suitable leaching of the Cr(VI) from the sample matrix is needed, without reducing the Cr(VI) species. The most used detection methods for chromium are graphite furnace AAS, chemiluminescence, electrochemical methods, ICP-MS, thermal ionization isotope dilution mass spectrometry and spectrophotometry (Vercoutere and Cornelis 1995)- The separation of the two species is the most delicate part of the procedure. [Pg.79]

Cohen A, Hertz HS, Mandel J, Paule RC, Schaffer R, Sniegoski LT, Sun T, Welch MJ, and White E V (1980) Total serum cholesterol by isotope dilution mass spectrometry A candidate definitive method. Chn Chem 26 854-860. [Pg.102]

Ellerbe P, Cohen A, Welch MJ, and White V E (1990) Determination of serum uric acid by isotope dilution mass spectrometry as a candidate definitive method. Anal. Chem 62 2173-2177. [Pg.103]

Ellerbe PM, Sniegoski LT, and Welch MJ (1995) Isotope dilution mass spectrometry as a candidate definitive method for determining total glycerides and triglycerides in serum. Clin Chem 41 397-404. [Pg.103]

Kingston HMS, Huo D, Lu Y, and Chalk S (1998) Accuracy in spedes analysis spedated isotope dilution mass spectrometry (SIDMS) exemplified by the evaluation of chromium species. Spectrochim Acta 536 299-309. [Pg.106]

White V E, Welch MJ, Sun T, Sniegoski LT, Schaffer R, Hertz HS, and Cohen A (1982) The accurate determination of serum glucose by isotope dilution/mass spectrometry - two methods. Biomed Mass Spectrom 9 395-405. [Pg.110]

Kessler A, Siekmann L (1999) Measurement of urea in human serum by isotope dilution mass spectrometry. A reference procedure. Clin Chem 45 1523-1529. [Pg.150]

SlEKMANN L (1979) Determination of steroid hormones by the use of isotope dilution mass spectrometry a definitive method in clinical chemistry. J Steroid Biochem 11 117-123. [Pg.152]

Calcium exists in the human body as Ca(II) protein-bound and free Ca (II) ions (Dilana et al. 1994). For total extracellular Ca in plasma, serum and urine a definitive isotope dilution-mass spectrometry (ID-MS) method exist. Free Ca(II) in plasma/serum can be determined with PISE, but no definitive and reference methods exist. For Ca in faeces, tissue and blood flame atomic absorption (FAAS) is used widely. [Pg.202]

McCann MT, Thompson MM, Gueron IC et al. (1996) Methyl malonic acid quantification by stable isotope dilution gas chromatography-mass spectrometry from filter paper urine samples. Clin Chem 42 9io-9i4. [Pg.233]

The development of new fiber coatings in the near future should further improve the specificity of SPME and overcome some of the observed matrix effects. Quantification by stable isotope dilution gas chromatography/mass spectrometry (GC/MS) may assist in improving analytical performance. Along with the possible application of micro LC and capillary LC columns to in-tube SPME, the development of novel derivatization methods and the potential for the analysis of fumigant pesticides, SPME appears to be a technique with a future in the analysis of pesticide residues in food. [Pg.732]

Table 1 lists MORE studies to date and Figures 2 and 3 present data from different areas of ridge. The first study of U-series disequilibria in MORE was the pioneering work of Condomines et al. (1981) (Fig. 2A). These workers analyzed samples having a relatively wide range in composition (Mg 72 to 57) from the FAMOUS region of the Mid-Atlantic Ridge (MAR 37°N) by combined alpha spectrometry (for U and Th isotopic ratios) and mass spectrometry (isotope dilution measurements for U and Th... [Pg.179]

Figure 5. Histogram Th/U for clinopyroxenes in peridotites and pyroxenites from the Ronda peridotite massif Concentrations were measured by isotope dilution mass spectrometry in acid-leached clinopyroxenes. This histogram shows that pyroxenites do not have larger Th/U ratios than peridotites. Thus, the correlation found between ( °Th/ U) and Th/U cannot be explained by mixing of peridotite and pyroxenite melts as advocated in Sigmarsson et al. (1998). Data from Hauri et al. (1994) and Bourdon and Zindler (unpublished). It can be shown with a simple Student t-test that the two populations are indistinguishable. Figure 5. Histogram Th/U for clinopyroxenes in peridotites and pyroxenites from the Ronda peridotite massif Concentrations were measured by isotope dilution mass spectrometry in acid-leached clinopyroxenes. This histogram shows that pyroxenites do not have larger Th/U ratios than peridotites. Thus, the correlation found between ( °Th/ U) and Th/U cannot be explained by mixing of peridotite and pyroxenite melts as advocated in Sigmarsson et al. (1998). Data from Hauri et al. (1994) and Bourdon and Zindler (unpublished). It can be shown with a simple Student t-test that the two populations are indistinguishable.
Th, Th and Po, all decay by alpha emission and are thus measurable by isotope dilution and alpha spectrometry (Ivanovich and Murray 1992). However, " Th is produced by the alpha decay of and in turn decays by beta emission to via the short-lived intermediate " Pa (half-life 1.18 m) ... [Pg.462]

Conventional calibration MDRD equation [used only with those creatinine methods that have not been recalibrated to be traceable to isotope dilution mass spectrometry (IDMS)]... [Pg.1543]

The main advantages of plasma-source mass spectrometry (PS-MS) over other analytical techniques, such as PS-AES and ETAAS, are the possibilities of quantitative isotope determination and isotope dilution analysis the rapid spectral scanning capability of the mass spectrometer and semiquantitative determinations to within a factor of two or three. Several labelling methods are used for the quantification of analytes present in complex mixtures. In these methods, the sample is spiked... [Pg.649]

Isotope dilution mass spectrometry (IDMS) can be applied with most of the ionisation methods used in mass spectrometry to determine isotope ratios with greater or lesser accuracy. For calibration by means of isotope dilution, an exactly known amount of a spike solution, enriched in an isotope of the element(s) to be determined, is added to an exactly known amount of sample. After isotopic equilibration, the isotope ratio for the mixture is determined mass spectrometrically. The attraction of IDMS is its potential simplicity it relies only on the measurement of ratios. The... [Pg.659]

In isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) the spike, the unspiked and a spiked sample are measured by ICP-MS in order to determine the isotope ratio. Using this technique, more precise and accurate results can be obtained than by using a calibration graph or by standard addition. This is due to elimination of various systematic errors. Isotopes behave identically in most chemical and physical processes. Signal suppression and enhancement due to the matrix in ICP-MS affects both isotopes equally. The same holds for most long-term instrumental fluctuations and drift. Accuracy and precision obtained with ID-ICP-QMS are better than with other ICP-QMS calibration... [Pg.660]

Applications The application of the isotope dilution technique is especially useful in carrying out precise and accurate micro and trace analyses. The most accurate results in mass spectrometry are obtained if the isotope dilution technique is applied (RSDs better than 1 % in trace analysis). Therefore, application of IDMS is especially recommended for calibration of other analytical data, and for certification of standard reference materials. The technique also finds application in the field of isotope geology, and is used in the nuclear industry for quantitative isotope analysis. [Pg.661]

Mass spectrometry can be specific in certain cases, and would even allow on-line QA in the isotope dilution mode. MS of molecular ions is seldom used in speciation analysis. API-MS allows compound-specific information to be obtained. APCI-MS offers the unique possibility of having an element- and compound-specific detector. A drawback is the limited sensitivity of APCI-MS in the element-specific detection mode. This can be overcome by use of on-line sample enrichment, e.g. SPE-HPLC-MS. The capabilities of ESI-MS for metal speciation have been critically assessed [546], Use of ESI-MS in metal speciation is growing. Houk [547] has emphasised that neither ICP-MS (elemental information) nor ESI-MS (molecular information) alone are adequate for identification of unknown elemental species at trace levels in complex mixtures. Consequently, a plea was made for simultaneous use of these two types of ion source on the same liquid chromatographic effluent. [Pg.676]


See other pages where Isotope dilution spectrometry is mentioned: [Pg.282]    [Pg.354]    [Pg.41]    [Pg.53]    [Pg.54]    [Pg.62]    [Pg.76]    [Pg.90]    [Pg.31]    [Pg.56]    [Pg.177]    [Pg.648]    [Pg.649]    [Pg.659]    [Pg.659]    [Pg.660]    [Pg.662]    [Pg.674]    [Pg.675]    [Pg.755]   
See also in sourсe #XX -- [ Pg.231 , Pg.234 , Pg.235 ]




SEARCH



Applications of Isotope Dilution Mass Spectrometry

Determination of Trace Elements and Elemental Species Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

Glow discharge mass spectrometry isotope dilution

Inductively isotope dilution mass spectrometry (IDMS

Isotope dilution

Isotope dilution inductively coupled plasma-mass spectrometry

Isotope dilution mass spectrometry , lead

Isotope dilution mass spectrometry , lead isotopes

Isotope dilution mass spectrometry IDMS)

Isotope dilution mass spectrometry characterization

Isotope dilution mass spectrometry definition

Isotope dilution mass spectrometry lead analysis

Isotope dilution mass spectrometry niacin

Isotope dilution mass spectrometry pantothenic acid

Isotope dilution thermal ionization mass spectrometry

Isotope dilution thermal ionization mass spectrometry ID-TIMS)

Isotope dilution-mass spectrometry interferences

Isotope dilution-mass spectrometry reverse

Isotope spectrometry

Isotope-dilution mass spectrometry

Isotope-dilution mass spectrometry accuracy

Isotope-dilution mass spectrometry analytical procedures

Isotope-dilution mass spectrometry bracketing

Isotope-dilution mass spectrometry calibration

Isotope-dilution mass spectrometry calibration standards

Isotope-dilution mass spectrometry certified materials

Isotope-dilution mass spectrometry definitive method

Isotope-dilution mass spectrometry internal standards

Isotope-dilution mass spectrometry laboratory method

Isotope-dilution mass spectrometry principles

Isotope-dilution mass spectrometry reference method

Isotope-dilution mass spectrometry reference methodology

Isotope-dilution mass spectrometry synthesis

Isotopic dilution

Laser ablation inductively coupled plasma isotope dilution mass spectrometry

Principles of Isotope Dilution Mass Spectrometry

Speciated isotope dilution mass spectrometry

Speciated isotope dilution mass spectrometry (SIDMS

Speciated isotope dilution mass spectrometry Speciation analysis

Speciated isotope dilution mass spectrometry analytics

Speciated isotope dilution mass spectrometry chemical speciation

Stable Isotope Dilution Mass Spectrometry

Trace isotope dilution mass spectrometry

© 2024 chempedia.info