Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface molecularly defined

In order to describe the second-order nonlinear response from the interface of two centrosynnnetric media, the material system may be divided into tlnee regions the interface and the two bulk media. The interface is defined to be the transitional zone where the material properties—such as the electronic structure or molecular orientation of adsorbates—or the electromagnetic fields differ appreciably from the two bulk media. For most systems, this region occurs over a length scale of only a few Angstroms. With respect to the optical radiation, we can thus treat the nonlinearity of the interface as localized to a sheet of polarization. Fonnally, we can describe this sheet by a nonlinear dipole moment per unit area, -P ", which is related to a second-order bulk polarization by hy P - lx, y,r) = y. Flere z is the surface nonnal direction, and the... [Pg.1275]

Cations and anions with a strong solvation shell retain their solvation shell and thus interact with the electrode surface only through electrostatic forces. Since the interaction is exclusively electrostatic, the amount of these ions at the interface is defined by the electrostatic bias between the sample and the counter electrodes and independent from the chemical properties of the electrode surface non-specific adsorption. Considering the size effect of their hydration shell, these ions are able to approach the electrode to a distance limited by the size of the solvation shell of the ion. The center of these ions at a distance of closest approach defined by the size of the solvation shell is called the outer Helmholtz layer. The electrode surface and the outer Helmholtz layer have charges of equal magnitude but opposite sign, resulting in the formation of an equivalent of a plate condenser on a scale of a molecular layer. Helmholtz proposed such a plate condenser on such a molecular scale for the first time in the middle of the nineteenth century. [Pg.405]

In molecular beam epitaxy (MBE) [317], molecular beams are used to deposit epitaxial layers onto the surface of a heated crystalline substrate (typically at 500-600° C). Epitaxial means that the crystal structure of the grown layer matches the crystal structure of the substrate. This is possible only if the two materials are the same (homoepitaxy) or if the crystalline structure of the two materials is very similar (heteroepitaxy). In MBE, a high purity of the substrates and the ion beams must be ensured. Effusion cells are used as beam sources and fast shutters allow one to quickly disrupt the deposition process and create layers with very sharply defined interfaces. Molecular beam epitaxy is of high technical importance in the production of III-V semiconductor compounds for sophisticated electronic and optoelectronic devices. Overviews are Refs. [318,319],... [Pg.153]

We conclude this section with some brief comments about microscopic dynamics at liquid interfaces. Molecular dynamic simulations of the dynamic properties of liquid interfaces have been limited to the calculation of equilibrium time correlation functions. The methodology of these calculations has been discussed earlier. One property that has received much attention is the molecular reorientation correlation function. If e(r) is a unit vector fixed in the molecular frame, the nth order time correlation function is defined by... [Pg.681]

For the thickness of the interface t, defined as in fig. 2.6, the authors write where is the intermolecular distance. For details, see the original paper. From this it is concluded that the correlation length introduced in sec. 2.5, is again of the order of molecular distances. Of course for more complex liquids the correlations will have a longer range. [Pg.162]

Local probe techniques are carried out ex-situ , non-situ or in-situ with respect to applied environmental conditions. Ex-situ local probe investigations are performed under UHV conditions on well-defined substrates, e.g., single-crystal surfaces. Such ex-situ measurements are often made in far fiom real conditions, which are characterized by adsorption and film formation. Therefore, ex-situ UHV techniques are usually combined with appropriate transfer devices to switch substrates fi om the real environment to UHV and vice versa. Non-situ local probe measurements are also started under UHV conditions to characterize the bare substrate surface, but they are continued under a finite vapor pressure in order to form adsorbates or mono- or multi-atomic (-molecular) films modeling real environmental conditions. In-situ local probe measurements are carried out at solid/liquid or solid/gas interfaces under defined real conditions involving adsorption and film formation. [Pg.15]

In order to perform a quantitative analysis of particle desorption kinetics, an unequivocal measure of adsorption extent is necessary. Defining a variable for quantifying particle adsorption seems simpler than for molecular systems because the thickness of the layer where a considerable concentration increase takes place is much smaller than particle dimensions [1,2]. Moreover, the location of the interface can be better defined because the density gradient of the solvent usually has a negligible extension in comparison with particle dimensions. One can, therefore, accurately measure the position of adsorbed particles relative to the interface and define the extent of adsorption as... [Pg.253]

The macroscopic topology of lyotropic or liquid crystal phases involving segregation is determined by the curvature of the interface a lamellar structure has zero curvature, while micellar phases or hexagonal phases exhibit interfacial curvature. An interface is defined by the segregation of different molecules or molecular subunits. Deformation of this interface may occur in a variety... [Pg.297]

The disadvantage of molecular mechanics is that there are many chemical properties that are not even defined within the method, such as electronic excited states. Since chemical bonding tenns are explicitly included in the force field, it is not possible without some sort of mathematical manipulation to examine reactions in which bonds are formed or broken. In order to work with extremely large and complicated systems, molecular mechanics software packages often have powerful and easy-to-use graphic interfaces. Because of this, mechanics is sometimes used because it is an easy, but not necessarily a good, way to describe a system. [Pg.57]

Separator GC/MS interface. An interface in which the effluent from the gas chromatograph is enriched in the ratio of sample to carrier gas. Separator, molecular separator, and enricher are synonymous terms. A separator should generally be defined as an effusion separator, a jet separator, or a membrane separator. [Pg.433]

In the adsorption mechanism, adhesion is modeled as occurring across a well-defined interface by molecular interaction across that interface, and is often... [Pg.11]

At any interface between two different phases there will be a redistribution of charge in each phase at the interface with a consequent loss of its electroneutrality, although the interface as a whole remains electrically neutral. (Bockris considers an interface to be sharp and definite to within an atomic layer, whereas an interphase is less sharply defined and may extend from at least two molecular diameters to tens of thousands of nanometres the interphase may be regarded as the region between the two phases in which the properties have not yet reached those of the bulk of either phase .) In the simplest case the interface between a metal and a solution could be visualised as a line of excess electrons at the surface of the metal and an equal number of positive charges in the solution that are in contact with the metal (Fig. 20.2). Thus although each phase has an excess charge the interface as a whole is electrically neutral. [Pg.1168]

The aspect of sample preparation and characterization is usually hidden in the smallprint of articles and many details are often not mentioned at all. It is, however, a very crucial point, especially with surface and interface investigations since there might be many unknown parameters with respect to surface contaminations, surface conformations, built-in stresses, lateral sample inhomogeneities, roughness, interfacial contact etc. This is in particular important when surfaces and interfaces are investigated on a molecular scale where those effects may be quite pronounced. Thus special care has to be taken to prepare well defined and artifact free specimens, which is of course not always simple to check. Many of these points are areas of... [Pg.378]

In this chapter we describe the basic principles involved in the controlled production and modification of two-dimensional protein crystals. These are synthesized in nature as the outermost cell surface layer (S-layer) of prokaryotic organisms and have been successfully applied as basic building blocks in a biomolecular construction kit. Most importantly, the constituent subunits of the S-layer lattices have the capability to recrystallize into iso-porous closed monolayers in suspension, at liquid-surface interfaces, on lipid films, on liposomes, and on solid supports (e.g., silicon wafers, metals, and polymers). The self-assembled monomolecular lattices have been utilized for the immobilization of functional biomolecules in an ordered fashion and for their controlled confinement in defined areas of nanometer dimension. Thus, S-layers fulfill key requirements for the development of new supramolecular materials and enable the design of a broad spectrum of nanoscale devices, as required in molecular nanotechnology, nanobiotechnology, and biomimetics [1-3]. [Pg.333]

The Volta potential is defined as the difference between the electrostatic outer potentials of two condensed phases in equilibrium. The measurement of this and related quantities is performed using a system of voltaic cells. This technique, which in some applications is called the surface potential method, is one of the oldest but still frequently used experimental methods for studying phenomena at electrified solid and hquid surfaces and interfaces. The difficulty with the method, which in fact is common to most electrochemical methods, is lack of molecular specificity. However, combined with modem surface-sensitive methods such as spectroscopy, it can provide important physicochemical information. Even without such complementary molecular information, the voltaic cell method is still the source of much basic electrochemical data. [Pg.13]

Stability implies a resistance to change, and may be defined qualitatively in those terms. In the specific case at hand, stability is defined as resistance to molecular or chemical disturbance. This requirement recognizes that a flocculated dispersion may be more stable than a peptized dispersion from the standpoint of its future behavior. A physically stable dispersion is one which will not undergo molecular replacements at the interface between the dispersed solid and the continuous phase. [Pg.92]

Bonfante et al. (73) used monoclonal antibodies and enzyme-gold complexes to reveal pectins and cellulose at the interface between the fungal wall and the host plasma membrane in AM roots (Fig. 6), and additional wall components have been investigated with other molecular probes (74-76). These studies indicate that the interface is an apoplastic space of high molecular complexity where the boundaries of the partners are defined. The examination of other endomycorrhizal systems has demonstrated that their interface is morphologically similar but different in composition. Cellulose and pectins are present at the interface... [Pg.271]

The surface potential of a liquid solvent s, /, is defined as the difference of electrical potentials across the interface between this solvent and the gas phase, with the assumption that the outer potential of the solvent is zero [21,22]. The potential of pure molecular liquid arises from a preferred orientation of the solvent dipoles in the free surface zone. At the surface of solution the electric field responsible for the surface potential may arise from a preferred orientation of the solvent and solute dipoles, and from the ionic double layer (Section IV). [Pg.20]

One of the most attractive roles of liquid liquid interfaces that we found in solvent extraction kinetics of metal ions is a catalytic effect. Shaking or stirring of the solvent extraction system generates a wide interfacial area or a large specific interfacial area defined as the interfacial area divided by a bulk phase volume. Metal extractants have a molecular structure which has both hydrophilic and hydrophobic groups. Therefore, they have a property of interfacial adsorptivity much like surfactant molecules. Adsorption of extractant at the liquid liquid interface can dramatically facilitate the interfacial com-plexation which has been exploited from our research. [Pg.361]


See other pages where Interface molecularly defined is mentioned: [Pg.271]    [Pg.123]    [Pg.86]    [Pg.76]    [Pg.187]    [Pg.291]    [Pg.198]    [Pg.2758]    [Pg.2574]    [Pg.2745]    [Pg.132]    [Pg.142]    [Pg.76]    [Pg.328]    [Pg.413]    [Pg.360]    [Pg.460]    [Pg.693]    [Pg.393]    [Pg.399]    [Pg.122]    [Pg.168]    [Pg.383]    [Pg.143]    [Pg.101]    [Pg.188]    [Pg.299]    [Pg.706]    [Pg.150]    [Pg.190]    [Pg.191]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Interfaces, defined

© 2024 chempedia.info