Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis infrared spectroscopy

Experimental Profile of Infrared Spectroscopy Quantitative Analysis... [Pg.327]

Another quantitative spectroscopic technique for the analysis of additives in lubricants and hydrocarbons is Raman spectroscopy (Coates, 1975). Theoretically, Raman spectroscopy should be as good as infrared for quantitative analysis. The... [Pg.236]

Miles and Frazier (1964fc) have employed quantitative melting curves measured by infrared spectroscopy and analysis of digitized spectra to demonstrate that the following disproportionation reaction takes place in D2O solution under certain specified conditions ... [Pg.289]

Various ASTM standards relate to spectroscopy, such as ASTM E 168-92 (Practices for General Techniques of Infrared Quantitative Analysis) and E 1655-97 (Standard Practices for Infrared, Multivariate, Quantitative Analysis). [Pg.642]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

The value of infrared spectra for identifying substances, for verifying purity, and for quantitative analysis rivals their usefulness in learning molecular structure. The infrared spectrum is as important as the melting point for characterizing a pure substance. Thus infrared spectroscopy has become an important addition to the many techniques used by the chemist. [Pg.249]

McClure, G.L., et. al. "Application of Computerized Quantitative Infrared Spectroscopy to the Determination of the Principal Lipids Found in Blood Serum", Computerized Quantitative Infrared Analysis, ASTM STP 934, G.L. McClure, Ed. American Society for Testing and Materials, Philadelphia, 1987, 131-154. [Pg.192]

D.M. Haaland, Multivariate Calibration Methods Applied to the Quantitative Analysis of Infrared Spectra, Chapter I in Computer-Enhanced Analytical Spectroscopy, Volume 3", edited by P.C. Jurs. Plenum Press, New York, 1992. [Pg.381]

Composition and structure of newly developed additives are commonly examined by IR, NMR, MS and elemental analysis, e.g. recently developed higher MW antioxidants [115]. Infrared spectroscopy is also well suited to the direct verification of compound composition and quantitative determination of additives in polymers. Gray and Neri [116] have used Soxhlet... [Pg.316]

Finally, it should be kept in mind that quantification is often problematic in surface analysis and characterization. Firstly because some techniques are not really suited for quantification, but also in cases such as infrared spectroscopy where one does not really know precisely how deep into the material one is probing. Although, there are many good examples of semi-quantitative applications that involve measuring relative band intensities that relate to changes in a surface property. However, for problem solving revealing qualitative differences is often sufficient information to be able to identify cause and move on to look for a potential solution. [Pg.677]

Samola and Urleb [15] reported qualitative and quantitative analysis of OTC using near-infrared (NIR) spectroscopy. Multivariate calibration was performed on NIR spectral data using principle component analysis (PCA), PLS-1, and PCR. [Pg.103]

The phase composition of glycine crystal forms during the drying step of a wet granulation process has been studied, and a model developed for the phase conversion reactions [88], X-ray powder diffraction was used for qualitative analysis, and near-infrared spectroscopy for quantitative analysis. It was shown that when glycine was wet granulated with microcrystalline cellulose, the more rapidly the granulation... [Pg.274]

Cahn, F. and S. Compton, Multivariate Calibration of Infrared Spectra for Quantitative Analysis Using Designed Experiments , Applied Spectroscopy, 42 865-872 (July, 1988). [Pg.147]

An important tool for the fast characterization of intermediates and products in solution-phase synthesis are vibrational spectroscopic techniques such as Fourier transform infrared (FTIR) or Raman spectroscopy. These concepts have also been successfully applied to solid-phase organic chemistry. A single bead often suffices to acquire vibrational spectra that allow for qualitative and quantitative analysis of reaction products,3 reaction kinetics,4 or for decoding combinatorial libraries.5... [Pg.166]

Schneider JF, Schneider KR, Spiro SE, et al. 1991. Evaluation of gas chromatography/matrix isolation-infrared spectroscopy for the quantitative analysis of environmental samples. Applied Spectroscopy 45 566-571. [Pg.187]

Recently, introductory books about chemometrics have been published by R. G. Brereton, Chemometrics—Data Analysis for the Laboratory and Chemical Plant (Brereton 2006) and Applied Chemometrics for Scientists (Brereton 2007), and by M. Otto, Chemometrics—Statistics and Computer Application in Analytical Chemistry (Otto 2007). Dedicated to quantitative chemical analysis, especially using infrared spectroscopy data, are A User-Friendly Guide to Multivariate Calibration and Classification (Naes et al. 2004), Chemometric Techniques for Quantitative Analysis (Kramer 1998), Chemometrics A Practical Guide (Beebe et al. 1998), and Statistics and Chemometrics for Analytical Chemistry (Miller and Miller 2000). [Pg.20]

Lai YW, Kemsley EK, Wilson RH. 1995. Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chem 53 95-98. [Pg.217]

Near infrared spectroscopy (NIRS), a technique based on absorption and reflectance of monochromatographic radiation by samples over a wavelength range of 400-2500 run, has been successfully applied for food composition analysis, for food quality assessment, and in pharmaceutical production control. NIRS can be used to differentiate various samples via pattern recognitions. The technique is fast and nondestructive method that does not require sample preparation and is very simple to use compared too many other analytical methods such as HPLC. The drawback of NIRS, however, is that the instrument has to be calibrated using a set of samples typically 20-50 with known analyte concentrations obtained by suitable reference methods such as FIPLC in order to be used for quantitative analyses. Simultaneous quantification of the... [Pg.63]

Molecular spectroscopic techniques have been widely used in pharmaceutical analysis for both qualitative (identification of chemical species) and quantitative purposes (determination of concentration of species in pharmaceutical preparations). In many cases, they constitute effective alternatives to chromatographic techniques as they provide results of comparable quality in a more simple and expeditious manner. The differential sensitivity and selectivity of spectroscopic techniques have so far dictated their specihc uses. While UV-vis spectroscopy has typically been used for quantitative analysis by virtue of its high sensitivity, infrared (IR) spectrometry has been employed mainly for the identihcation of chemical compounds on account of its high selectivity. The development and consolidation of spectroscopic techniques have been strongly influenced by additional factors such as the ease of sample preparation and the reproducibility of measurements, which have often dictated their use in quality control analyses of both raw materials and finished products. [Pg.463]

A.D. Patel, P.E. Luner and M.S. Kemper, Quantitative analysis of polymorphs in binary and multi-component powder mixtures by near-infrared reflectance spectroscopy, Int. J. Pharm. 206, 63-74. Erratum in Int. J. Pharm., 212, 295 (2000). [Pg.491]

Y. Ren, Y. Gou, Z. Tang, P. Liu and Y. Guo, Nondestructive quantitative analysis of analgin powder pharmaceutical by near-infrared spectroscopy and artificial neural network technique. Anal. Lett., 33, 69-80 (2000). [Pg.491]

R. Cinier and J. Guihnent, Quantitative analysis of resorcinol in aqueous solution by near-infrared spectroscopy, Vib. Spectrosc., 11, 51-59 (1996). [Pg.491]

M. Alcala, J. Leon, J. Ropero, M. Blanco and R.J. Romanach, Analysis of low content drug tablets by transmission near infrared spectroscopy selection of calibration ranges according to multivariate detection and quantitation limits of PLS models, J. Pharm. Sci, 97(12), 5318-5327 (2007). [Pg.491]

Brown, J. M. Elliott, J. J. "The Quantitative Analysis of Minerals by Fourier Transform Infrared (FT-IR) Spectroscopy", from Workshop on Application of IR Methods to the Study of Clay Minerals, Clay Mineral Society, 20th Annual Meeting, October 1, 1983, Buffalo, NY. [Pg.59]

Infrared spectroscopy has been used for quantitatively measuring the amounts of 1,2-, 3,4-, cis-1,4-, and trans-1,4-polymers in the polymerization of 1,3-dienes its use for analysis of isotactic and syndiotactic polymer structures is very limited [Coleman et al., 1978 Tosi and Ciampelli, 1973]. Nuclear magnetic resonance spectroscopy is the most powerful tool for detecting both types of stereoisomerism in polymers. High-resolution proton NMR and especially 13C NMR allow one to obtain considerable detail about the sequence distribution of stereoisomeric units within the polymer chain [Bovey, 1972, 1982 Bovey and Mirau, 1996 Tonelli, 1989 Zambelli and Gatti, 1978],... [Pg.635]

Reeves, J.B. Ill and McCarty, G.W. (2001) Quantitative analysis of agricultural soils using near infrared reflectance spectroscopy and a fibre-optic probe. Journal of Near Infrared Spectroscopy 9, 25-34. [Pg.217]

All the above described reactions proceed cleanly in nearly quantitative yields (80-95%). The new dendrimers display excellent solubility in most organic solvents. The structures of the novel organosilicon dendrimers were confirmed by elemental analysis, infrared spectroscopy, mass spectrometry, and H, C. and Si NMR spectroscopy. [Pg.156]


See other pages where Quantitative analysis infrared spectroscopy is mentioned: [Pg.169]    [Pg.25]    [Pg.2]    [Pg.503]    [Pg.398]    [Pg.416]    [Pg.418]    [Pg.421]    [Pg.353]    [Pg.170]    [Pg.745]    [Pg.903]    [Pg.241]    [Pg.350]    [Pg.40]    [Pg.315]    [Pg.316]    [Pg.94]    [Pg.267]    [Pg.441]    [Pg.491]    [Pg.699]    [Pg.65]   
See also in sourсe #XX -- [ Pg.81 , Pg.88 , Pg.89 ]

See also in sourсe #XX -- [ Pg.3416 ]

See also in sourсe #XX -- [ Pg.180 ]

See also in sourсe #XX -- [ Pg.444 , Pg.445 , Pg.446 , Pg.447 , Pg.448 , Pg.449 ]




SEARCH



Analysis spectroscopy

Infrared analysis

Infrared quantitative

Infrared spectroscopy quantitative

Spectroscopy quantitative

© 2024 chempedia.info