Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial examples semiconductors

In 1973 the Semiconductor Equipment and Materials Institute (SEMI) held its first standards meeting. SEMI standards are voluntary consensus specifications developed by the producers, users, and general interest groups in the semiconductor (qv) industry. Examples of electronic chemicals are glacial acetic acid [64-19-7] acetone [67-64-17, ammonium fluoride [12125-01 -8] and ammonium hydroxide [1336-21 -6] (see Ammonium compounds), dichloromethane [75-09-2] (see Cm.OROCARBONSANDcm.OROHYDROCARBONs), hydrofluoric acid [7664-39-3] (see Eluorine compounds, inorganic), 30% hydrogen peroxide (qv) [7722-84-1] methanol (qv) [67-56-1] nitric acid (qv) [7697-37-2] 2-propanoI [67-63-0] (see Propyl alcohols), sulfuric acid [7664-93-9] tetrachloroethane [127-18-4] toluene (qv) [108-88-3] and xylenes (qv) (see also Electronic materials). [Pg.447]

The study of metals and metal surfaces is rapidly gaining general interest, mainly because of its importance in industrial research. Semiconductors 136> and especially the doping of semiconductors, S8> are of prime interest. Studies of oxydation states were for instance carried out for W—V—O-phases 122) or for a series of carbides 123>. An example is shown in Fig. 10, where the state of the niobium and nitrogen present in very low concentrations in steel, had to be detected. [Pg.29]

It can be of practical importance to modify the electronic properties of cheap semiconductor catalysts by doping such that their activity corresponds to that of expensive noble metal catalysts. Two industrial examples of such substitutions are the SCR process (waste-gas purification) and the selective oxidation of methanol to formaldehyde. [Pg.160]

Surface Anatysis. Surface analysis can be employed in many situations, but it is particularly well suited for the analysis of contamination or surface damage. In many industries, contamination at the nanometer scale can spell disaster for a process. For example, semiconductor materials have very predictable conductive behavior, which is essential for designing microelectronics that work properly. The addition of contaminants to the system will change the behavior of the materials and can cause failures, so it is essential that surface analysis be employed in the development of a product and sometimes during manufacturing stages to ensure that the materials are clean and reliable. [Pg.1779]

In corrosion, adsorbates react directly with the substrate atoms to fomi new chemical species. The products may desorb from the surface (volatilization reaction) or may remain adsorbed in fonning a corrosion layer. Corrosion reactions have many industrial applications, such as dry etching of semiconductor surfaces. An example of a volatilization reaction is the etching of Si by fluorine [43]. In this case, fluorine reacts with the Si surface to fonn SiF gas. Note that the crystallinity of the remaining surface is also severely disrupted by this reaction. An example of corrosion layer fonnation is the oxidation of Fe metal to fonn mst. In this case, none of the products are volatile, but the crystallinity of the surface is dismpted as the bulk oxide fonns. Corrosion and etching reactions are discussed in more detail in section A3.10 and section C2.9. [Pg.301]

Undeniably, one of the most important teclmological achievements in the last half of this century is the microelectronics industry, the computer being one of its outstanding products. Essential to current and fiiture advances is the quality of the semiconductor materials used to construct vital electronic components. For example, ultra-clean silicon wafers are needed. Raman spectroscopy contributes to this task as a monitor, in real time, of the composition of the standard SC-1 cleaning solution (a mixture of water, H2O2 and NH OH) [175] that is essential to preparing the ultra-clean wafers. [Pg.1217]

The advantages of miniaturization are now being exploited in areas beyond microelectronics. Adaptation of materials and processes originally devised for semiconductor manufacture has allowed fabrication of sensors (for example, pressure meters and accelerometers used in the automotive industry) (6,7), complex optical (8) and micromechanical (6,7,9) assembHes, and devices for medical diagnostics (6,7,10) using Hthographic resists. [Pg.113]

Like XPS, the application of AES has been very widespread, particularly in the earlier years of its existence more recently, the technique has been applied increasingly to those problem areas that need the high spatial resolution that AES can provide and XPS, currently, cannot. Because data acquisition in AES is faster than in XPS, it is also employed widely in routine quality control by surface analysis of random samples from production lines of for example, integrated circuits. In the semiconductor industry, in particular, SIMS is a competing method. Note that AES and XPS on the one hand and SIMS/SNMS on the other, both in depth-profiling mode, are complementary, the former gaining signal from the sputter-modified surface and the latter from the flux of sputtered particles. [Pg.42]

In addition to varying in costs, the chemical composition of the water provided from the mains supply also varies between the water companies, as may that between independent supplies within each company s area. The current criterion on potable water quality requires it to be wholesome i.e. it should not create a health hazard, with relatively wide limits on particular constituents. The cost of removing these constituents (e.g. calcium, magnesium, chlorides, iron and silica) increases with concentration and variability. This imposes a cost burden on, for example, the semiconductor and electronic component industries and on the operation of high-pressure boilers. Therefore both the potential cost of metered water supply and the chemical composition of the supply waters may influence future decisions on the water company s area in which an industry may wish to locate. [Pg.37]

In a modern industrialised society the analytical chemist has a very important role to play. Thus most manufacturing industries rely upon both qualitative and quantitative chemical analysis to ensure that the raw materials used meet certain specifications, and also to check the quality of the final product. The examination of raw materials is carried out to ensure that there are no unusual substances present which might be deleterious to the manufacturing process or appear as a harmful impurity in the final product. Further, since the value of the raw material may be governed by the amount of the required ingredient which it contains, a quantitative analysis is performed to establish the proportion of the essential component this procedure is often referred to as assaying. The final manufactured product is subject to quality control to ensure that its essential components are present within a pre-determined range of composition, whilst impurities do not exceed certain specified limits. The semiconductor industry is an example of an industry whose very existence is dependent upon very accurate determination of substances present in extremely minute quantities. [Pg.3]

An example of the use of ammonia is the deposition of silicon nitride, a common reaction in the semiconductor industry ]... [Pg.73]

In this brief review we illustrated on selected examples how combinatorial computational chemistry based on first principles quantum theory has made tremendous impact on the development of a variety of new materials including catalysts, semiconductors, ceramics, polymers, functional materials, etc. Since the advent of modem computing resources, first principles calculations were employed to clarify the properties of homogeneous catalysts, bulk solids and surfaces, molecular, cluster or periodic models of active sites. Via dynamic mutual interplay between theory and advanced applications both areas profit and develop towards industrial innovations. Thus combinatorial chemistry and modem technology are inevitably intercoimected in the new era opened by entering 21 century and new millennium. [Pg.11]

A micro reactor concept proposed by MIT and DuPont on the basis of electronic circuits is the most prominent among the examples listed for the hybrid approach [19,101]. The so-called turnkey multiple micro-reactor test station relies on the use of standard components originating from the semiconductor industry for microchemical processing, the construction being oriented at the concept of printed circuit boards. [Pg.64]

Another example comes from the field of semiconductor photoelectrochemistry. Semiconductors in contact with aqueous solutions can drive chemical reactions when irradiated. This is the basis for the photoelectrochemical etching of semiconductors in the electronic industry and for much research aiming at... [Pg.178]

The importance of materials science to U.S. competitiveness can hardly be overstated. Key materials science areas underlie virtually every facet of modem life. Semiconductors underpin our electronics industry. Optical fibers are essential for communications. Superconducting materials will probably affect many areas ceramics, composites, and thin films are having a big impact now in transportation, construction, manufacturing, and even in sports—tennis rackets are an example. [Pg.17]

Academic institutions have been included, and in many instances, there have been commercial consequences, although that has not been the mission of the Department of Defense. The Department of Defense mission is defense and national security, not the development of compact disk players. But in fact, for example, in electronics and devices, fundamental materials research was sponsored by the Department of Defense. Various organizations and activities in parallel in industry (at Lincoln Laboratory, IBM, and General Electric) led to the development of the semiconductor laser in the early 1960s. [Pg.49]

The use of organic polymers as conductors and semiconductors in the electronics industry has led to a huge research effort in poly(thiophenes), with a focus on the modification of their electronic properties so that they can behave as both hole and electron conductors. Casado and co-workers [60] have performed combined experimental and theoretical research using Raman spectroscopy on a variety of fluorinated molecules based on oligomers of thiophene, an example of one is shown in Figure 7. [Pg.701]


See other pages where Industrial examples semiconductors is mentioned: [Pg.477]    [Pg.46]    [Pg.206]    [Pg.637]    [Pg.285]    [Pg.296]    [Pg.206]    [Pg.4]    [Pg.918]    [Pg.192]    [Pg.2714]    [Pg.135]    [Pg.203]    [Pg.314]    [Pg.107]    [Pg.116]    [Pg.154]    [Pg.333]    [Pg.8]    [Pg.297]    [Pg.584]    [Pg.363]    [Pg.221]    [Pg.303]    [Pg.543]    [Pg.34]    [Pg.231]    [Pg.143]    [Pg.272]    [Pg.52]    [Pg.385]    [Pg.339]    [Pg.380]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Industrial examples

© 2024 chempedia.info