Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indium property

Pocza J F, Barna A and Barna P B 1969 Formation processes of vacuum deposited indium films and thermodynamical properties of submicroscopic particles observed by in situ electron microscopy J. Vac. Sc/. Techno . 6 472... [Pg.2923]

Alloys. GaUium has complete miscibility in the hquid state with aluminum, indium, tin, and zinc. No compounds are formed. However, these binary systems form simple eutectics having the following properties ... [Pg.160]

Properties. Table 1 hsts many of the physical, thermal, mechanical, and electrical properties of indium. The highly plastic nature of indium, which is its most notable feature, results from deformation from mechanical twinning. Indium retains this plasticity at cryogenic temperatures. Indium does not work-harden, can endure considerable deformation through compression, cold-welds easily, and has a distinctive cry on bending as does tin. [Pg.79]

The solder and ahoy market, including low melting or fusible ahoys, is a principal user of indium (see SoLDERS AND BRAZING ALLOYS). The addition of indium results in unique properties of solders such as improved corrosion and fatigue resistance, increased hardness, and compatibhity with gold substrates. To fachitate use in various appHcations, indium and its ahoys can be easily fabricated into wine, ribbon, foil, spheres, preforms, solder paste, and powder. [Pg.80]

AppHcations for electroplated indium coatings include indium bump bonding for shicon semiconductor die attachment to packaging substrates and miscehaneous appHcations where the physical or chemical properties of indium metal are desired as a plated deposit. [Pg.80]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

Hardness of the aimealed metals covers a wide range. Rhodium (up to 40%), iridium (up to 30%), and mthenium (up to 10%) are often used to harden platinum and palladium whose intrinsic hardness and tensile strength are too low for many intended appHcations. Many of the properties of rhodium and indium. Group 9 metals, are intermediate between those of Group 8 and Group 10. The mechanical and many other properties of the PGMs depend on the physical form, history, and purity of a particular metal sample. For example, electrodeposited platinum is much harder than wrought metal. [Pg.163]

Coordination Compounds. A large number of indium complexes with nitrogen ligands have been isolated, particularly where Ir is in the +3 oxidation state. Examples of ammine complexes include pr(NH3)3] " [24669-15-6], prCl(NH3)] " [29589-09-1], and / j -pr(03SCF3)2(en)2]" [90065-94-4], Compounds of A/-heterocychc ligands include trans- [xCX py)][ [24952-67-8], Pr(bipy)3] " [16788-86-6], and an unusual C-metalated bipyridine complex, Pr(bipy)2(C, N-bipy)] [87137-18-6]. Isolation of this latter complex produced some confusion regarding the chemical and physical properties of Pr(bipy)3]3+ (167). [Pg.181]

Solders. In spite of the wide use and development of solders for millennia, as of the mid-1990s most principal solders are lead- or tin-based alloys to which a small amount of silver, zinc, antimony, bismuth, and indium or a combination thereof are added. The principal criterion for choosing a certain solder is its melting characteristics, ie, soHdus and Hquidus temperatures and the temperature spread or pasty range between them. Other criteria are mechanical properties such as strength and creep resistance, physical properties such as electrical and thermal conductivity, and corrosion resistance. [Pg.241]

Unlike boron, aluminum, gallium, and indium, thallium exists in both stable univalent (thaHous) and trivalent (thaUic) forms. There are numerous thaHous compounds, which are usually more stable than the corresponding thaUic compounds. The thaUium(I) ion resembles the alkaU metal ions and the silver ion in properties. In this respect, it forms a soluble, strongly basic hydroxide and a soluble carbonate, oxide, and cyanide like the alkaU metal ions. However, like the silver ion, it forms a very soluble fluoride, but the other haUdes are insoluble. Thallium (ITT) ion resembles aluminum, gallium, and indium ions in properties. [Pg.468]

For a discussion of the atomic properties of the group 13 metals see Downs AJ (1993) In Downs AJ (eds) Chemistry of aluminum gallium, indium and thallium. Blackie, London, Chapter 1... [Pg.83]

The photoelectrochemical properties of CdS nanoparticles formed in LB films of cadmium arachidate on ITO glass (indium tin oxide-coated glass) were investigated [188]. The CdS particles were formed by exposure to H2S gas, and then the cadmium arachidate structure was regenerated by exposing the gas-treated films with aqueous solutions of CdCL. Gassing/immersion cycling increased the particle size from 2.3 0.7 nm after one cycle to 9.8 2.4 nm after five cycles. The 9.8-nm particles showed UV-visible ab-... [Pg.92]

C21-0010. Indium is a relatively soft Lewis acid. Use this fact to predict properties of indium compared with its horizontal neighbor (tin) and its diagonal neighbor (lead) in the periodic table. [Pg.1521]

Extensive structural, optical, and electronic studies on the chalcopyrite semiconductors have been stimulated by the promising photovoltaic and photoelectrochem-ical properties of the copper-indium diselenide, CuInSe2, having a direct gap of about 1.0 eV, viz. close to optimal for terrestrial photovoltaics, and a high absorption coefficient which exceeds 10 cm . The physical properties of this and the other compounds of the family can be modulated to some extent by a slight deviation from stoichiometry. Thus, both anion and cation deficiencies may be tolerated, inducing, respectively, n- and p-type conductivities a p-type behavior would associate to either selenium excess or copper deficiency. [Pg.43]

Thermal Properties. The glass transition temperature (Tg) and the decomposition temperature (Td) were measured with a DuPont 910 Differential Scanning Calorimeter (DSC) calibrated with indium. The standard heating rate for all polymers was 10 °C/min. Thermogravimetric analysis (TGA) was performed on a DuPont 951 Thermogravimetric Analyzer at a heating rate of 20 °C/min. [Pg.157]

The low-melting-point (157 °C), silver metal is mainly used in alloys to decrease the melting point. Combined with tin, lead, and bismuth to produce soldering metal for wide temperature ranges. The element is highly valuable in the electronics age as its unique properties are ideal for solar cells, optoelectronics, and microwave equipment. The arsenide is used in lasers and is also suitable for transistors. ITO (indium tin oxide) is a transparent semiconductor with wide application in displays, touchscreens, etc. In the household, indium as an additive prevents the tarnishing of silverware. Some electronic wristwatches contain indium batteries. [Pg.137]

Alloys are mixtures of metals combined to obtain specific characteristics and enhanced properties for a particular application. The term fusible metals or fusible alloys denotes a group of alloys that have melting points below that of tin (232°C, 449°F). Most of these substances are mixtures of metals that by themselves have relatively low melting points, such as tin, bismuth (m.p. 275°C), indium (157°C),... [Pg.230]

Indium and gallium coordination compounds containing phosphine ligands have recently aroused interest for their widespread application as intermediates in the preparation of the Group 13 - Group 14 semiconductors [4], Since the early reports about compounds with transition metal-indium bonds [51, relatively little research has been reported in this field. However there is a growing interest in the coordination chemistry and structural features of heterometallic indium [6] and gallium complexes [7] which are also attractive as potential precursors of new materials with particular properties. [Pg.200]


See other pages where Indium property is mentioned: [Pg.245]    [Pg.79]    [Pg.525]    [Pg.532]    [Pg.337]    [Pg.86]    [Pg.61]    [Pg.5]    [Pg.160]    [Pg.455]    [Pg.144]    [Pg.85]    [Pg.452]    [Pg.62]    [Pg.295]    [Pg.410]    [Pg.382]    [Pg.386]    [Pg.139]    [Pg.204]    [Pg.199]    [Pg.544]    [Pg.173]    [Pg.650]    [Pg.663]    [Pg.235]    [Pg.109]    [Pg.8]    [Pg.231]    [Pg.237]    [Pg.239]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Indium antimonide properties

Indium arsenide electronic properties

Indium arsenide properties

Indium atomic properties

Indium compounds properties

Indium compounds thermal properties

Indium electronic properties

Indium elemental properties

Indium fundamental properties

Indium isotopes and their properties

Indium nitride properties

Indium nuclear properties

Indium optical properties

Indium phosphide electronic properties

Indium phosphide properties

Indium physical properties

Indium thermal properties

Indium thermodynamic propertie

Indium transport properties

© 2024 chempedia.info