Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals ductility

Lynden-Bell R M, van Duijneveldt J S and Frenkel D 1993 Free-energy changes on freezing and melting ductile metals Mol. Phys. 80 801-14... [Pg.2286]

It is a shiny, white, soft, and ductile metal, and takes on a bluish cast when exposed to air at room temperatures for a long time. The metal starts to oxidize in air at 200oC, and when processed at even moderate temperatures must be placed in a protective atmosphere. [Pg.104]

Hafnium is a ductile metal with a brilliant silver luster. Its properties are considerably influenced by presence of zirconium impurities. Of all the elements, zirconium and hafnium are... [Pg.130]

Reduction. Hafnium oxide can be reduced using calcium metal to yield a fine, pyrophoric metal powder (see Calciumand calciumalloys). This powder contains considerable oxygen contamination because of oxygen s high solubility in hot hafnium, and caimot be consoHdated into ductile metal. To obtain low oxygen ductile hafnium, the feed must be an oxygen-free halide compound such as hafnium tetrachloride or potassium hexafluorohafnate [16871-86-6]. [Pg.442]

Composite Strengthening. An alternative strengthening method which holds great promise for producing advanced high temperature aUoys involves the incorporation of fibers or lamellae of a strong, often brittle phase, in a relatively weak, ductile, metallic matrix. This technique has been... [Pg.114]

Probably the most important powder property governing the formation of atomic bonds is the surface condition of the particles, especially with respect to the presence of oxide films. If heavy oxide layers are present, they must be penetrated by projections on the particles. This results in only local rather than widespread bonding. A ductile metal such as iron which has a heavy oxide layer may not form as strong or as many bonds as a less ductile metal. [Pg.182]

A series of events can take place in response to the thermal stresses (/) plastic deformation of the ductile metal matrix (sHp, twinning, cavitation, grain boundary sliding, and/or migration) (2) cracking and failure of the brittle fiber (5) an adverse reaction at the interface and (4) failure of the fiber—matrix interface (17—20). [Pg.200]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

Properties. Pure thorium metal is a dense, bright silvery metal having a very high melting point. The metal exists in two allotropic modifications. Thorium is a reactive, soft, and ductile metal which tarnishes slowly on exposure to air (12). Having poor mechanical properties, the metal has no direct stmctural appHcations. A survey of the physical properties of thorium is summarized in Table 1. Thorium metal is diamagnetic at room temperature, but becomes superconducting below 1.3—1.4 K. [Pg.36]

Zirconium is a hard, shiny, ductile metal, similar to stainless steel in appearance. It can be hot-worked to form slabs, rods, and rounds from arc-melted ingot. Further cold-working of zirconium with intermediate annealings produces sheet, foil, bar wire, and tubing. Physical properties are given in Table 3. [Pg.427]

Reduction. BrezeHus attempted the first reduction of zirconium in 1824 by the reaction of sodium with potassium fiuorozirconate. However, the first pure ductile metal was made in 1925 by the iodide thermal-dissociation method. The successfiil commercial production of pure ductile zirconium via the magnesium reduction of zirconium tetrachloride vapor in an inert gas atmosphere was the result of the intense research efforts of KroU and... [Pg.430]

Cemented carbides belong to a class of hard, wear-resistant, refractory materials ia which the hard carbides of Group 4—6 (IVB—VIB) metals are bound together or cemented by a soft and ductile metal biader, usually cobalt or nickel. Although the term cemented carbide is widely used ia the United States, these materials are better known iatemationally as hard metals (see also Refractories Refractory coatings Refractory fibers). [Pg.442]

Purification. The metal obtained from both electrolytic processes contains considerable oxygen, which is beheved to cause brittieness at room temperature. For most purposes the metal as plated is satisfactory. However, if ductile metal is desired, the oxygen can be removed by hydrogen reduction, the iodide process, calcium refining, or melting ia a vacuum ia the presence of a small amount of carbon. [Pg.119]

Expanded joints (Fig. 10-138) are confined to the smaller pipe sizes of ductile metals. A smooth finish is required on the outside of the pipe and on the faces of the ridges inside the bore. Pipe and bore must have the same coefficient of thermal expansion. Furthermore, it is essential that the pipe metal have a lower yield point than the metal... [Pg.958]

The one-dimensional geometry of a radially expanding ring is perhaps the simplest for considering fundamental aspects of the fracture and fragmentation process. In a ductile metal ring, fracture proceeds through the multiple... [Pg.290]

Rubbers are exceptional in behaving reversibly, or almost reversibly, to high strains as we said, almost all materials, when strained by more than about 0.001 (0.1%), do something irreversible and most engineering materials deform plastically to change their shape permanently. If we load a piece of ductile metal (like copper), for example in tension, we get the following relationship between the load and the extension (Fig. 8.4). This can be... [Pg.79]

Fig. 8.4. Load-extension curve tor a bor of ductile metal (e.g. annealed copper) pulled in tension. Fig. 8.4. Load-extension curve tor a bor of ductile metal (e.g. annealed copper) pulled in tension.
Some materials, like glass, have low and K, and crack easily ductile metals have high Gf and and are very resistant to fast-fracture polymers have intermediate G, but can be made tougher by making them into composites and (finally) many metals, when cold, become brittle - that is, G and fall with temperature. How can we explain these important observations ... [Pg.140]

Let us first of all look at what happens when we load a cracked piece of a ductile metal - in other words, a metal that can flow readily to give large plastic deformations (like pure copper or mild steel at, or above, room temperature). If we load the material sufficiently, we can get fracture to take place starting from the crack. If you examine the... [Pg.140]

Slides Plastic cavitation around inclusions in metals (e.g. metallographic section through neck in tensile specimen) SEM pictures of fracture surfaces in ductile metals, glass, alkali halide crystals. [Pg.293]

At and near room temperature, metals have well-defined, almost constant, moduli and yield strengths (in contrast to polymers, which do not). And most metallic alloys have a ductility of 20% or better. Certain high-strength alloys (spring steel, for instance) and components made by powder methods, have less - as little as 2%. But even this is enough to ensure that an unnotched component yields before it fractures, and that fracture, when it occurs, is of a tough, ductile, type. But - partly because of their ductility - metals are prey to cyclic fatigue and, of all the classes of materials, they are the least resistant to corrosion and oxidation. [Pg.290]

Laminated composite plates under in-plane tensile loading exhibit deformation response that is both like a ductile metal plate under tension and iike a metai plate that buckles. That is, a composite plate exhibits progressive faiiure on a layer-by-layer basis as in Figure 4-34. Of course, a composite plate in compression buckles in a manner similar to that of a metal plate except that the various failures in the compressive loading version of Figure 4-34 could be lamina failures or the various plate buckling events (more than one buckling load occurs). [Pg.237]

Niobium is always found in nature associated with tantalum and it closely resembles tantalum in its chemical and mechanical properties. It is a soft ductile metal which, like tantalum, work hardens more slowly than most metals. It will in fact absorb over 90% cold work before annealing becomes necessary, and it is easily formed at room temperature. In addition, welds of high quality can be produced in the metal. In appearance the metal is somewhat similar to stainless steel it has a density slightly higher than stainless steel and a thermal conductivity similar to 1% carbon steel. [Pg.852]


See other pages where Metals ductility is mentioned: [Pg.142]    [Pg.340]    [Pg.439]    [Pg.138]    [Pg.138]    [Pg.143]    [Pg.100]    [Pg.211]    [Pg.381]    [Pg.320]    [Pg.321]    [Pg.374]    [Pg.473]    [Pg.199]    [Pg.228]    [Pg.230]    [Pg.386]    [Pg.292]    [Pg.292]    [Pg.316]    [Pg.319]    [Pg.87]    [Pg.136]    [Pg.138]    [Pg.142]    [Pg.280]    [Pg.180]    [Pg.864]   
See also in sourсe #XX -- [ Pg.170 ]

See also in sourсe #XX -- [ Pg.159 ]




SEARCH



A Ductile and Noble Metal

Ductile

Ductile metallic solids

Ductility selected metals

Ductility, of metals

Ductilization

Metals ductile

Metals ductile property

Weld metal ductility

© 2024 chempedia.info