Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis considerations

Hydrolysis considerations obviously demand that hydrides be kept away from contact with acids. [Pg.306]

When 1, 3, 3-triethoxypropene was hydrolyzed with IN sulfuric acid, a solution of malonaldehyde whose optical density was perfectly stable at 350 m/x for at least one week was obtained. If the solution was made alkaline, the optical density at the same wavelength increased by a small value and then remained virtually constant for at least one week (56). It was also observed that in these solutions the extinction coefficient at 350 m/x was very low (observed 8.3, 61.5 and 69, for solutions of pH 0.4, 7.15 and 9.4 respectively) compared with previously reported values which varied from 200 ( 40) to 1000 ( 48). On the other hand, the absorption of solutions having a pH of 3 to 5, increased considerably with time (at pH 4.75, the extinction coefficient of malonaldehyde at 350 m/x was initially about 40 after four weeks a value of about 930 was recorded and the optical density of the solution was still increasing). This increase in absorption was accompanied by a marked decrease in the malonaldehyde content of the solution, as measured by the thiobarbituric acid method. As a corollary, it was found that aqueous solutions of malonaldehyde, prepared by autocatalyzed hydrolysis (33) of the same acetal and which had a pH of about 3.5, showed, at the completion of the hydrolysis, considerably higher extinction coefficient values at 350 m/x than did those malonaldehyde solutions which were prepared by hydrolysis with IN acid and subsequently adjusted to pH 4. It appears, therefore, that at pH values at which most of the periodate oxidations are carried out, malonaldehyde is unstable and undergoes a chemical reaction, the nature of which is not, as yet, known. [Pg.112]

Another aspect of the hydrolysis or hydrides is the alkalinity that results, especially from alkali metal and alkaline-earth hydrides. This alkalinity can cause chemical burns in skin and other tissues. Hydrolysis considerations obviously demand that hydrides be kept away from contact with acids. [Pg.796]

Hydrolysis considerations also lead to the conclusion that warming acid indicator solutions displaces their color towards the acid side. The hydrolysis of an indicator salt BI in water solution may be written as ... [Pg.191]

It is usually unnecessary to isolate such hydrazones during the working up the mixture is partitioned between water and a water-insoluble solvent such as ether. The hydrazones then remain in the aqueous phase, and the other organic substances are removed in the organic phase. The carbonyl components are finally regenerated from the aqueous hydrazone phase by acid hydrolysis. Considerable fractionation of mixed carbonyl compounds can be achieved by varying the reaction conditions, notably the temperature or pH, of either the condensation or the hydrolysis. Acid-sensitive carbonyl compounds, e.g., citral, may be isolated by exchange from the hydrazone by an excess of formaldehyde.932... [Pg.513]

The presence of a proton-containing ammonium group on the alcoholic part of an organic ester facilitates its hydrolysis considerably more than the corresponding trialkylammonium group Thus... [Pg.124]

To 5a] In view of the behaviour of esters of pyrrole-dicarboxylic acids, already reported, it is interesting to notice that methyl pyrrole-2-carboxy-late undergoes alkaline hydrolysis considerably faster than the 3-isomer [10 A 2 (1. mole i sec ) (25°), 231, 4 1 and 0 59, for ethyl pyrrole-1-, and methyl pyrrole-2- and -3-carboxylate, respectively, in 56 per cent aqueous acetone]. The effect is attributed to intramolecular hydrogen bonding in the transition state (109)374 (cf. to c above). [Pg.110]

Hydrolysis of Potassium Ethyl Sulphate. Dissolve about i g. of the crystals in about 4 ml. of cold distilled water, and divide the solution into two portions, a) To one portion, add barium chloride solution. If pure potassium ethyl sulphate were used, no precipitate should now form, as barium ethyl sulphate is soluble in water. Actually however, almost all samples of potassium ethyl sulphate contain traces of potassium hydrogen sulphate formed by slight hydrolysis of the ethyl compound during the evaporation of its solution, and barium chloride almost invariably gives a faint precipitate of barium sulphate. b) To the second portion, add 2-3 drops of concentrated hydrochloric acid, and boil the mixture gently for about one minute. Cool, add distilled water if necessary until the solution has its former volume, and then add barium chloride as before. A markedly heavier precipitate of barium sulphate separates. The hydrolysis of the potassium ethyl sulphate is hastened considerably by the presence of the free acid Caustic alkalis have a similar, but not quite so rapid an effect. [Pg.79]

Hydrolysis. Ethyl acetoacetate when treated w ith cold dilute sodium hydroxide solution gives the sodium salt of acetoacetic acid. This acid is unstable, and readily breaks down into acetone and carbon dioxide it is of considerable... [Pg.270]

Aniline hydrochloride, being a salt formed from a very weak base and a strong acid, undergoes considerable hydrolysis in aqueous solution to aniline... [Pg.454]

The yield of iso-propylbenzene is influenced considerably by the quality of the anhydrous aluminium chloride employed. It Is recommended that a good grade of technical material be purchase in small bottles containing not more than 100 g. each undue exposure to the atmosphere, which results in some hydrolysis, is thus avoided. Sealed bottles containing the reagent sometimes have a high internal pressure they should be wrapped in a dry cloth and opened with care. [Pg.512]

High purity acetaldehyde is desirable for oxidation. The aldehyde is diluted with solvent to moderate oxidation and to permit safer operation. In the hquid take-off process, acetaldehyde is maintained at 30—40 wt % and when a vapor product is taken, no more than 6 wt % aldehyde is in the reactor solvent. A considerable recycle stream is returned to the oxidation reactor to increase selectivity. Recycle air, chiefly nitrogen, is added to the air introducted to the reactor at 4000—4500 times the reactor volume per hour. The customary catalyst is a mixture of three parts copper acetate to one part cobalt acetate by weight. Either salt alone is less effective than the mixture. Copper acetate may be as high as 2 wt % in the reaction solvent, but cobalt acetate ought not rise above 0.5 wt %. The reaction is carried out at 45—60°C under 100—300 kPa (15—44 psi). The reaction solvent is far above the boiling point of acetaldehyde, but the reaction is so fast that Httle escapes unoxidized. This temperature helps oxygen absorption, reduces acetaldehyde losses, and inhibits anhydride hydrolysis. [Pg.76]

Environmental Considerations. Environmental problems in Ziegler chemistry alcohol processes are not severe. A small quantity of aluminum alkyl wastes is usually produced and represents the most significant disposal problem. It can be handled by controlled hydrolysis and separate disposal of the aqueous and organic streams. Organic by-products produced in chain growth and hydrolysis can be cleanly burned. Wastewater streams must be monitored for dissolved carbon, such as short-chain alcohols, and treated conventionally when necessary. [Pg.457]

Disposal of exhausted soHds can be easily overlooked at the plant design stage, particularly when these have no intrinsic value alternative disposal methods might include landfiU of inert material or incineration, hydrolysis, or pyrolysis of organic materials. Liquid, soHd, and gaseous emissions are aU subject to the usual environmental considerations. [Pg.93]

Processes for Triacetate. There are both batch and continuous process for triacetate. Many of the considerations and support faciUties for producing acetate apply to triacetate however, no acetyl hydrolysis is required. In the batch triacetate sulfuric acid process, however, a sulfate hydrolysis step (or desulfonation) is necessary. This is carried out by slow addition of a dilute aqueous acetic acid solution containing sodium or magnesium acetate (44,45) or triethanolamine (46) to neutrali2e the Hberated sulfuric acid. The cellulose triacetate product has a combined acetic acid content of 61.5%. [Pg.296]

Hexafluorophosphoric Acid. Hexafluorophosphoric acid (3) is present under ambient conditions only as an aqueous solution because the anhydrous acid dissociates rapidly to HF and PF at 25°C (56). The commercially available HPF is approximately 60% HPF based on PF analysis with HF, HPO2F2, HPO F, and H PO ia equiUbrium equivalent to about 11% additional HPF. The acid is a colorless Hquid which fumes considerably owiag to formation of an HF aerosol. Frequently, the commercially available acid has a dark honey color which is thought to be reduced phosphate species. This color can be removed by oxidation with a small amount of nitric acid. When the hexafluorophosphoric acid is diluted, it slowly hydrolyzes to the other fluorophosphoric acids and finally phosphoric acid. In concentrated solutions, the hexafluorophosphoric acid estabUshes equiUbrium with its hydrolysis products ia relatively low concentration. Hexafluorophosphoric acid hexahydrate [40209-76-5] 6 P 31.5°C, also forms (66). This... [Pg.226]

Solid Superacids. Most large-scale petrochemical and chemical industrial processes ate preferably done, whenever possible, over soHd catalysts. SoHd acid systems have been developed with considerably higher acidity than those of acidic oxides. Graphite-intercalated AlCl is an effective sohd Friedel-Crafts catalyst but loses catalytic activity because of partial hydrolysis and leaching of the Lewis acid halide from the graphite. Aluminum chloride can also be complexed to sulfonate polystyrene resins but again the stabiUty of the catalyst is limited. [Pg.565]

The nitroparaffins have been utilized for many appHcations (114). Some of these uses have been discontinued because of economic and environmental considerations. For instance, significant quantities of 1-nitropropane once were used for the production of hydroxylammonium sulfate and propionic acid by hydrolysis. The need to dispose of an acid waste stream from this process made it uneconomical, so it was discontinued. [Pg.104]

Emissions During Exterior End Use. When flexible PVC is used in exterior appHcations plasticizer loss may occur due to a number of processes which include evaporation, microbial attack, hydrolysis, degradation, exudation, and extraction. It is not possible, due to this wide variety of contribution processes, to assess theoretically the rate of plasticizer loss by exposure outdoors. It is necessary, therefore, to carry out actual measurements over extended periods in real life situations. Litde suitable data have been pubHshed with the exception of some studies on roofing sheet (47). The data from roofing sheet has been used to estimate the plasticizer losses from all outdoor appHcations. This estimate may weU be too high because of the extrapolation involved. Much of this extracted plasticizer does not end up in the environment because considerable degradation takes place during the extraction process. [Pg.132]

AEyl compounds, depending on the stmcture of substituents, can undergo other reactions such as rearrangements, hydrolysis, and additions. Such reactions that may affect polymerization and have health considerations have been closely studied only with important industrial compounds (1). [Pg.81]

Strong acids or bases catalyze the hydrolysis of 2-pyrrohdinone to 4-aminobutanoic acid [y-aminobutyric acid [56-12-2] (GABA)]. GABA is involved in the functioning of the brain and nervous system and is of considerable interest as a potential dietary supplement (60). [Pg.360]

The most significant difference between the alkoxysilanes and siUcones is the susceptibiUty of the Si—OR bond to hydrolysis (see Silicon compounds, silicones). The simple alkoxysilanes are often operationally viewed as Hquid sources of siUcon dioxide (see Silica). The hydrolysis reaction, which yields polymers of siUcic acid that can be dehydrated to siUcon dioxide, is of considerable commercial importance. The stoichiometry for hydrolysis for tetraethoxysilane is... [Pg.37]

Saponification can proceed direcdy as a one-step reaction as shown above, or it can be achieved indirectly by a two-step reaction where the intermediate step generates fatty acids through simple hydrolysis of the fats and oils and the finishing step forms soap through the neutralization of the fatty acid with caustic soda. There are practical considerations which must be addressed when performing this reaction on a commercial scale. [Pg.150]

The quaHty, ie, level of impurities, of the fats and oils used in the manufacture of soap is important in the production of commercial products. Fats and oils are isolated from various animal and vegetable sources and contain different intrinsic impurities. These impurities may include hydrolysis products of the triglyceride, eg, fatty acid and mono/diglycerides proteinaceous materials and particulate dirt, eg, bone meal and various vitamins, pigments, phosphatides, and sterols, ie, cholesterol and tocopherol as weU as less descript odor and color bodies. These impurities affect the physical properties such as odor and color of the fats and oils and can cause additional degradation of the fats and oils upon storage. For commercial soaps, it is desirable to keep these impurities at the absolute minimum for both storage stabiHty and finished product quaHty considerations. [Pg.150]

Hydrolysis and Polycondensation. As shown in Figure 1, at gel time (step C), events related to the growth of polymeric chains and interaction between coUoids slow down considerably and the stmcture of the material is frozen. Post-gelation treatments, ie, steps D—G (aging, drying, stabilization, and densification), alter the stmcture of the original gel but the resultant stmctures aU depend on the initial stmcture. Relative rates, of hydrolysis, (eq. 2), and condensation, (eq. 3), determine the stmcture of the gel. Many factors influence the kinetics of hydrolysis and... [Pg.251]


See other pages where Hydrolysis considerations is mentioned: [Pg.95]    [Pg.62]    [Pg.83]    [Pg.34]    [Pg.437]    [Pg.18]    [Pg.473]    [Pg.95]    [Pg.62]    [Pg.83]    [Pg.34]    [Pg.437]    [Pg.18]    [Pg.473]    [Pg.130]    [Pg.609]    [Pg.122]    [Pg.349]    [Pg.140]    [Pg.239]    [Pg.241]    [Pg.258]    [Pg.358]    [Pg.396]    [Pg.517]    [Pg.75]    [Pg.28]    [Pg.239]    [Pg.259]    [Pg.339]    [Pg.43]    [Pg.73]    [Pg.40]   
See also in sourсe #XX -- [ Pg.194 , Pg.195 ]




SEARCH



© 2024 chempedia.info