Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbide fuels

As previously stated, uranium carbides are used as nuclear fuel (145). Two of the typical reactors fueled by uranium and mixed metal carbides are thermionic, which are continually being developed for space power and propulsion systems, and high temperature gas-cooled reactors (83,146,147). In order to be used as nuclear fuel, carbide microspheres are required. These microspheres have been fabricated by a carbothermic reduction of UO and elemental carbon to form UC (148,149). In addition to these uses, the carbides are also precursors for uranium nitride based fuels. [Pg.325]

In order to be used as nuclear fuel, carbide microspheres are required. These microspheres have been fabricated by a carbothermic reduction of UO3 and elemental carbon to form UC. In addition to these uses, the carbides are also precursors for uranium nitride based fuels. [Pg.25]

Fast breeder reactor fuel rods consist of stainless-steel-clad mixed oxide (U,Pu)02 fuel however, more stable alloys for cladding and in-core structural materials, with resistance to swelling and embrittlement under fast neutron irradiation, and more efficient fuels (carbide see 17.3.12.1.2) or nitride (see 17.3.12.3)] are needed h The mechanical, metallurgical, and chemical processes in fuel element irradiation are depicted in Figure 1. Figure 2 shows the PFR (U.K.) fast breeder fuel element, and Figures 3 and 4 illustrate the Fast Flux Test Facility (FFTF) fuel system. [Pg.565]

Considering chemical structures of ceramic fuels, these fuels can be categorized as oxide fuels, carbide fuels, and nitride fuels. Oxide fuels such as UO2, mixed oxide (MOX), and thorium dioxide (Th02) have low thermal conductivities compared to carbide and nitride fuels. Hence, from the heat transfer point of view, oxide fuels can also be identified as low thermal conductivity fuels. On the other hand, carbide (eg, UC and UC2) and nitride (eg, UN) fuels are identified as high thermal conductivity fuels. Table 18.3 lists basic properties of these fuels at 0.1 MPa and 25°C. [Pg.588]

Strelzoff, S. (1974), Partial oxidation for syngas and fuel (comparaison des precedes Texaco, Shell et Union Carbide) . Hydrocarbon processing, Vol. 53, No. 12, p. 79. [Pg.459]

Other forms of carbon-carbon composites have been or are being developed for space shutde leading edges, nuclear fuel containers for sateUites, aircraft engine adjustable exhaust nozzles, and the main stmcture for the proposed National Aerospace plane (34). For reusable appHcations, a siHcon carbide [409-21 -2] based coating is added to retard oxidation (35,36), with a boron [7440-42-8] h Lsed sublayer to seal any cracks that may form in the coating. [Pg.5]

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

Petrochemicals Methyl Cellosolve Fuel Additive Grade, brochure. Union Carbide Canada Ltd., 1991. [Pg.364]

Ucon HTF-500. Union Carbide Corp. manufactures Ucon HTE-500, a polyalkylene glycol suitable for Hquid-phase heat transfer. The fluid exhibits good thermal stabHity in the recommended temperature range and is inhibited against oxidation. The products of decomposition are soluble and viscosity increases as decomposition proceeds. The vapor pressure of the fluid is negligible and it is not feasible to recover the used fluid by distiHation. Also, because the degradation products are soluble in the fluid, it is not possible to remove them by filtration any spent fluid usuaHy must be burned as fuel or discarded. The fluid is soluble in water. [Pg.504]

Nuclear Applications. Use of the nitrides of uranium-235 and thorium as fuels and breeders in high temperature reactors has been proposed (see Nuclearreactors). However, the compounds most frequently used for this purpose are the oxides and carbides. Nitrides could be useful in high... [Pg.56]

Several components are required in the practical appHcation of nuclear reactors (1 5). The first and most vital component of a nuclear reactor is the fuel, which is usually uranium slightly enriched in uranium-235 [15117-96-1] to approximately 3%, in contrast to natural uranium which has 0.72% Less commonly, reactors are fueled with plutonium produced by neutron absorption in uranium-238 [24678-82-8]. Even more rare are reactors fueled with uranium-233 [13968-55-3] produced by neutron absorption in thorium-232 (see Nuclear reactors, nuclear fuel reserves). The chemical form of the reactor fuel typically is uranium dioxide, UO2, but uranium metal and other compounds have been used, including sulfates, siUcides, nitrates, carbides, and molten salts. [Pg.210]

Fig. 2. Fuel for high temperature gas-cooled reactor. Fissile material is coated with carbon and siHcon carbide, fertile material with carbon. Particles mixed... Fig. 2. Fuel for high temperature gas-cooled reactor. Fissile material is coated with carbon and siHcon carbide, fertile material with carbon. Particles mixed...
The third control is by use of a fixed burnable poison. This consists of rods containing a mixture of aluminum oxide and boron carbide, included in the initial fuel loading using the vacant spaces in some of the fuel assembhes that do not have control clusters. The burnable poison is consumed during operation, causing a reactivity increase that helps counteract the drop owing to fuel consumption. It also reduces the need for excessive initial soluble boron. Other reactors use gadolinium as burnable poison, sometimes mixed with the fuel. [Pg.217]

M. Levenson, J. V. C. Trice, and W. J. Mecham, Comparative Cost Study of the Processing of Oxide, Carbide, and MetalFast Breeder Reactor Fuels by Aqueous, Uolatility andPyrochemicalMethods, ANL-7137, Argonne National Laboratory, Argonne, lU., 1966. [Pg.207]

Flame plating (D-gun) employs oxygen and fuel gas. In this method, developed by the Union Carbide Corporation, the gas mixture is detonated by an electric spark at four detonations per second. The powders, mixed with the gas, are fed under control into a chamber from which they are ejected when detonation occurs. The molten, 14—16-pm particles are sprayed at a velocity of 732 m/s at distances of 5.1—10.2 cm from the surface. The substrate is moved past the stationary gun. [Pg.44]

As a hard, high melting carbide and possible constituent of UC-fueled reactors, zirconium carbide has been studied extensively. The preparation, behavior, and properties of zirconium and other carbides are reviewed in Reference 132, temperature-correlated engineering property data in Reference 133 (see also Carbides). [Pg.434]

Carbides of the Actinides, Uranium, and Thorium. The carbides of uranium and thorium are used as nuclear fuels and breeder materials for gas-cooled, graphite-moderated reactors (see Nuclearreactors). The actinide carbides are prepared by the reaction of metal or metal hydride powders with carbon or preferably by the reduction of the oxides uranium dioxide [1344-57-6] UO2 tduranium octaoxide [1344-59-8], U Og, or thorium... [Pg.452]

The Tj-carbides are not specifically synthesized, but are of technical importance, occurring in alloy steels, stelUtes, or as embrittling phases in cemented carbides. Other complex carbides in the form of precipitates may form in multicomponent alloys or in high temperature reactor fuels by reaction between the fission products and the moderator graphite, ie, pyrographite-coated fuel kernels. [Pg.455]

Commercial calcium carbide, containing about 80% CaC2, is formed in the Hquid state. Impurities are mainly CaO and impurities present in raw materials. CO is usually collected for use as a fuel in lime production or drying of the coke used in the process. The Hquid calcium carbide is tapped from the furnace into cooling molds. [Pg.458]

SiHcon carbide s relatively low neutron cross section and good resistance to radiation damage make it useful in some of its new forms in nuclear reactors (qv). SiHcon carbide temperature-sensing devices and stmctural shapes fabricated from the new dense types are expected to have increased stabiHty. SiHcon carbide coatings (qv) may be appHed to nuclear fuel elements, especially those of pebble-bed reactors, or siHcon carbide may be incorporated as a matrix in these elements (153,154). [Pg.469]

For a large number of applications involving ceramic materials, electrical conduction behavior is dorninant. In certain oxides, borides (see Boron compounds), nitrides (qv), and carbides (qv), metallic or fast ionic conduction may occur, making these materials useful in thick-film pastes, in fuel cell apphcations (see Fuel cells), or as electrodes for use over a wide temperature range. Superconductivity is also found in special ceramic oxides, and these materials are undergoing intensive research. Other classes of ceramic materials may behave as semiconductors (qv). These materials are used in many specialized apphcations including resistance heating elements and in devices such as rectifiers, photocells, varistors, and thermistors. [Pg.349]

Advanced Cracking Reactor. The selectivity to olefins is increased by reducing the residence time. This requires high temperature or reduction of the hydrocarbon partial pressure. An advanced cracking reactor (ACR) was developed jointly by Union Carbide with Kureha Chemical Industry and Chiyoda Chemical Constmction Co. (72). A schematic of this reactor is shown in Figure 6. The key to this process is high temperature, short residence time, and low hydrocarbon partial pressure. Superheated steam is used as the heat carrier to provide the heat of reaction. The burning of fuel... [Pg.442]

Source of Heat Industrial furnaces are either fuel-fired or electric, and the first decision that a prospective furnace user must make is between these two. Although elecdric furnaces are uniquely suited to a few apphcations in the chemical industiy (manufacture of sihcon carbide, calcium carbide, and graphite, for example), their principal use is in the metallurgical and metal-treatment industries. In most cases the choice between elecdric and fuel-fired is economic or custom-dictated, because most tasks that can be done in one can be done equally well in the other. Except for an occasional passing reference, electric furnaces will not be considered further here. The interested reader will find useful reviews of them in Kirk-Othmer Encyclopedia of Chemical Technology (4th ed., vol. 12, articles by Cotchen, Sommer, and Walton, pp. 228-265, Wiley, New York, 1994) and in Marks Standard Handbook for Mechanical Engineers (9th ed., article by Lewis, pp. 7.59-7.68, McGraw-Hill, New York, 1987). [Pg.2403]

Phosphoric Acid Fuel Cell This type of fuel cell was developed in response to the industiy s desire to expand the natural-gas market. The electrolyte is 93 to 98 percent phosphoric acid contained in a matrix of silicon carbide. The electrodes consist of finely divided platinum or platinum alloys supported on carbon black and bonded with PTFE latex. The latter provides enough hydrophobicity to the electrodes to prevent flooding of the structure by the electrolyte. The carbon support of the air elec trode is specially formulated for oxidation resistance at 473 K (392°F) in air and positive potentials. [Pg.2412]

The fuel for the Peach Bottom reactor consisted of a uranium-thorium dicarbide kernel, overcoated with pyrolytic carbon and silicon carbide which were dispersed in carbon compacts (see Section 5), and encased in graphite sleeves [37]. There were 804 fuel elements oriented vertically in the reactor core. Helium coolant flowed upward through the tricusp-shaped coolant channels between the fuel elements. A small helium purge stream was diverted through the top of each element and flowed downward through the element to purge any fission products leaking from the fuel compacts to the helium purification system. The Peach... [Pg.448]

Carbide-based cermets have particles of carbides of tungsten, chromium, and titanium. Tungsten carbide in a cobalt matrix is used in machine parts requiring very high hardness such as wire-drawing dies, valves, etc. Chromium carbide in a cobalt matrix has high corrosion and abrasion resistance it also has a coefficient of thermal expansion close to that of steel, so is well-suited for use in valves. Titanium carbide in either a nickel or a cobalt matrix is often used in high-temperature applications such as turbine parts. Cermets are also used as nuclear reactor fuel elements and control rods. Fuel elements can be uranium oxide particles in stainless steel ceramic, whereas boron carbide in stainless steel is used for control rods. [Pg.10]

Hydrides of the types AnHi (An = Th, Np, Pu, Am, Cm) and AnHs (Pa —> Am), as well as ThaHis (i.e. ThHs.yj) have been so obtained but are not very stable thermally and are decidedly unstable with respect to air and moisture. Borides, carbides, silicides and nitrides (q.v.) are mostly less sensitive chemically and, being refractory materials, those of Th, U and Pu in particular have been studied extensively as possible nuclear fuels.Their stoichiometries are very varied but the more important ones are the semi-metallic monocarbides, AnC, and mononitrides, AnN, all of which have the rock-salt structure they are predominantly ionic... [Pg.1267]


See other pages where Carbide fuels is mentioned: [Pg.44]    [Pg.44]    [Pg.78]    [Pg.582]    [Pg.503]    [Pg.213]    [Pg.213]    [Pg.223]    [Pg.224]    [Pg.212]    [Pg.202]    [Pg.203]    [Pg.323]    [Pg.325]    [Pg.325]    [Pg.448]    [Pg.453]    [Pg.408]    [Pg.454]    [Pg.165]    [Pg.423]    [Pg.818]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Carbide fuels uranium dicarbide

Metal Carbides in Fuel Cell Cathode

Plutonium carbide nuclear fuels

Tungsten carbide fuel cell catalysts

Uranium Carbide Fuels

Uranium carbide nuclear fuels

© 2024 chempedia.info