Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts reactions product

Phosphoms oxychloride has strong donor properties toward metal ions. The remarkably stable POCl —AlCl complex has been utilized to remove AlCl from Friedel-Crafts reaction products. Any POX molecule contains a pyramidal PX group the oxygen atom occupies the fourth position to complete the distorted tetrahedron (37). Some properties of phosphoms oxyhaUdes ate presented in Table 8. [Pg.369]

Under Lewis-acid-catalyzed conditions, electron-rich arenes can be added to alkenes to generate Friedel-Crafts reaction products. This subject will be discussed in detail in Chapter 7, on aromatic compounds. However, it is interesting to note that direct arylation of styrene with benzene in aqueous CF3CO2H containing H2PtCl6 yielded 30-5% zram-PhCH CHR via the intermediate PhPt(H20)Cl4.157 Hydropheny-lation of olefins can be catalyzed by an Ir(III) complex.158... [Pg.75]

Once Part B is started, it should be continued without interruption until the Friedel-Crafts reaction product is decomposed. [Pg.41]

An aqueous Friedel-Crafts reaction has also been used in polymer synthesis. The acid-catalyzed polymerization of benzylic alcohol and fluoride functionality in monomeric and polymeric fluorenes was investigated in both organic and aqueous reaction media. Polymeric products are consistent with the generation of benzylic cations that participate in electrophilic aromatic substitution reactions. Similar reactions occurred in a water-insoluble Kraft pine lignin by treatment with aqueous acid. A Bisphenol A-type epoxy resin is readily emulsified in aqueous medium with an ethylene oxide adduct to a Friedel-Crafts reaction product of styrene and 4-(4-cumyl)phenol as emulsifier.Electrophilic substitution reaction of indoles with various aldehydes and ketones proceeded smoothly in water using the hexamethylenetetramine-bromine complex to afford the corresponding Z A(indolyl)methanes in excellent yields.InFs-catalyzed electrophilic substitution reactions of indoles with aldehydes and ketones are carried out in water.Enzymatic Friedel-Crafts-type electrophilic substitution reactions have been reported. ... [Pg.187]

Alkyldiphenyl oxide disulfonate surfactants are a Friedel-Crafts reaction product of an olefin and diphenyl oxide using AlClj as a catalyst, as indicated in Figure 1. Diphenyl oxide is present in excess and is recycled. The reaction yields a mixture of monoalkyl and dialkyldiphenyl oxide. The ratio of mono- to dialkylation can be optimized depending on the end use of the products. [Pg.146]

The commercial product, m.p. 53-55°, may be used. Alternatively the methyl -naphthyl ketone may be prepared from naphthalene as described in Section IV,136. The Friedel - Crafts reaction in nitrobenzene solution yields about 90 per cent, of the p-ketone and 10 per cent, of the a-ketone in carbon disulphide solution at — 15°, the proportions ore 65 per cent, of the a- and 35 per cent, of the p-isomer. With chlorobenzene ns the reaction medium, a high proportion of the a-ketone is also formed. Separation of the liquid a-isomer from the solid p-isomer in Such mixtures (which remain liquid at the ordinary temp>erature) is readily effected through the picrates the picrate of the liquid a-aceto compound is less soluble and the higher melting. [Pg.767]

Stereoselectivity was also observed in the Friedel-Crafts reaction of optically active plienyloxirane with toluene and anisole. The product diarylethanol had an enantiomeric ratio of 60 40 (37). [Pg.553]

Sulfonylation. Under Friedel-Crafts reaction conditions, sulfonyl haUdes and sulfonic acid anhydrides sulfonylate aromatics (139), a reaction that can be considered the analogue of the related acylation with acyl haUdes and anhydrides. The products are sulfones. Sulfonyl chlorides are the most frequently used reagents, although the bromides and fluorides also react ... [Pg.560]

Propiophenone. Propiophenone [93-55-0] (ethyl phenyl ketone) is a colorless Hquid with a flowery odor. It can be prepared by the Friedel-Crafts reaction of benzene and propionyl chloride in the presence of aluminum chloride (346), or by the catalytic reaction of benzoic acid and propionic acid in the presence of water (347). Propiophenone is commercially available (348), and is sold in Japan at 2700 Y/kg (349). It is used in the production of ephedrine, as a fragrance enhancer, and as a polymerization sensitizer. [Pg.501]

Isopropylnaphthalenes produced by alkylation of naphthalene with propjdene have gained commercial importance as chemical intermediates, eg, 2-isopropylnaphthalene [2027-17-OJ, and as multipurpose solvents, eg, mixed isopropylnaphthalenes. Alkylation of naphthalene with alkyl haUdes (except methyl hahdes), acid chlorides, and acid anhydrides proceeds in the presence of anhydrous aluminum chloride by Friedel-Crafts reactions (qv). The products are alkylnaphthalenes or alkyl naphthyl ketones, respectively (see Alkylation). [Pg.483]

Friedel-Crafts reaction of ahyl alcohol with benzene or alkylbenzene yields many kinds of products, in which the reaction species and the product ratio depend on the type of catalyst. Zinc chloride is the most effective catalyst for producing ahyl compounds by this reaction (32). [Pg.74]

Anhydrous aluminum chloride, AIQ, is manufactured primarily by reaction of chlorine [7782-50-5] vapor with molten aluminum and used mainly as a catalyst in organic chemistry ie, in Friedel-Crafts reactions (qv) and in proprietary steps in the production of titanium dioxine [13463-67-7] Ti02, pigment. Its manufacture by carbochlorination of alumina or clay is less energy-intensive and is the preferred route for a few producers (19). [Pg.136]

In the dyestuff industry, anthraquinone still ranks high as an intermediate for the production of dyes and pigments having properties unattainable by any other class of dyes or pigments. Its cost is relatively high and will remain so because of the equipment and operations involved in its manufacture. As of May 1991, anthraquinone sold for 4.4/kg in ton quantities. In the United States and abroad, anthraquinone is manufactured by a few large chemical companies (62). At present, only two processes for its production come into consideration manufacture by the Friedel-Crafts reaction utilizing benzene, phthahc anhydride, and anhydrous aluminum chloride, and by the vapor-phase catalytic oxidation of anthracene the latter method is preferred. [Pg.424]

Benzoyl chloride is an important benzoylating agent. In this use the benzoyl radical is introduced into alcohols, phenols, amines, and other compounds through the Friedel-Crafts reaction and the Schotten-Baumaim reaction. Other significant uses are in the production of benzoyl peroxide [94-56-0], benzophenone [119-61-9], and in derivatives employed in the fields of dyes, resins, perfumes, pharmaceuticals, and as polymerization catalysts. [Pg.56]

The chlorination of benzene can theoretically produce 12 different chlorobenzenes. With the exception of 1,3-dichlorobenzene, 1,3,5-trichlorobenzene, and 1,2,3,5-tetrachlorobenzene, all of the compounds are produced readily by chlorinating benzene in the presence of a Friedel-Crafts catalyst (see Friedel-CRAFTS reactions). The usual catalyst is ferric chloride either as such or generated in situ by exposing a large surface of iron to the Hquid being chlorinated. With the exception of hexachlorobenzene, each compound can be further chlorinated therefore, the finished product is always a mixture of chlorobenzenes. Refined products are obtained by distillation and crystallization. [Pg.46]

Absolute rate data for Friedel-Crafts reactions are difficult to obtain. The reaction is complicated by sensitivity to moisture and heterogeneity. For this reason, most of the structure-reactivity trends have been developed using competitive methods, rather than by direct measurements. Relative rates are established by allowing the electrophile to compete for an excess of the two reagents. The product ratio establishes the relative reactivity. These studies reveal low substrate and position selectivity. [Pg.581]

A good deal of experimental care is often required to ensure that the product mixture at the end of a Friedel-Crafts reaction is determined by kinetic control. The strong Lewis acid catalysts can catalyze the isomerization of alkylbenzenes, and if isomerization takes place, the product composition is not informative about the position selectivity of electrophilic attack. Isomerization increases the amount of the meta isomer in the case of dialkylbenzenes, because this isomer is thermodynamically the most stable. ... [Pg.583]

This activation of the ortho position is most strikingly illustrated in the reactivity of 2,5-dimethylthiophene, which competitive experiments have shown to undergo the SnCb-catalyzed Friedel-Crafts reaction more rapidly than thiophene and even 2-methylthiophene. The influence of the reagent on the isomer distribution is evident from the fact that 2-methoxythiophene is formylated and bromi-nated (with A -bromosuccinimide) only in the 5-position. Similarly, although 3-bromo-2-methylthiophene has been detected in the bromi-nation of 2-methylthiophene with bromine, only the 5-isomer (besides some side-chain bromination) is obtained in the bromination of alkylthiophenes with A -bromosuccinimide. ° However, the mechanism of the latter type of bromination is not established. No lines attributable to 2-methyl-3-thiocyanothiophene or 2-methyl-3-chIoro-thiophene could be detected in the NMR spectra of the substitution products (5-isomers) obtained upon thiocyanation with thiocyanogen or chlorination with sulfuryl chloride. 2-Methyl- and 2-ethyl-thiophene give, somewhat unexpectedly, upon alkylation with t-butyl chloride in the presence of Feds, only 5-t-butyl monosubstituted and... [Pg.48]

Thiophenethiols are prepared by reduction of the sulfonyl chlorides or, more conveniently, by the reaction of Grignard rea-gents or thienyllithium compounds with sulfur. They have also been obtained by cleavage or thienyl alkyl sulfides with sodium in liquid ammonia. 3-Thiophenethiol is a by-product in the commercial thiophene synthesis. Thiophenethiols have recently also been prepared by a synthesis involving Friedel-Crafts reaction of 2,4-dinitrobenzenesulfenyl chloride with thiophenes, followed by basic cleavage of the resulting sulfide. ... [Pg.86]

The importance of the solvent, in many cases an excess of the quatemizing reagent, in the formation of heterocyclic salts was recognized early. The function of dielectric constants and other more detailed influences on quatemization are dealt with in Section VI, but a consideration of the subject from a preparative standpoint is presented here. Methanol and ethanol are used frequently as solvents, and acetone,chloroform, acetonitrile, nitrobenzene, and dimethyl-formamide have been used successfully. The last two solvents were among those considered by Coleman and Fuoss in their search for a suitable solvent for kinetic experiments both solvents gave rise to side reactions when used for the reaction of pyridine with i-butyl bromide. Their observation with nitrobenzene is unexpected, and no other workers have reported difficulties. However, tetramethylene sulfone, 2,4-dimethylsulfolane, ethylene and propylene carbonates, and salicylaldehyde were satisfactory, giving relatively rapid reactions and clean products. Ethylene dichloride, used quite frequently for Friedel-Crafts reactions, would be expected to be a useful solvent but has only recently been used for quatemization reactions. ... [Pg.10]

It should be noted that Scheme 5.1-44 shows idealized Friedel-Crafts allcylation reactions. In practice, there are a number of problems associated with the reaction. These include polyalkylation reactions, since the products of a Friedel-Crafts alkylation reaction are often more reactive than the starting material. Also, isomerization and rearrangement reactions can occur, and can result in a large number of products [74, 75]. The mechanism of Friedel-Crafts reactions is not straightforward, and it is possible to propose two or more different mechanisms for a given reaction. Examples of the typical processes occurring in a Friedel-Crafts alkylation reaction are given in Scheme 5.1-45 for the reaction between 1-chloropropane and benzene. [Pg.196]

Raston has reported an acid-catalyzed Friedel-Crafts reaction [89] in which compounds such as 3,4-dimethoxyphenylmethanol were cyclized to cyclotriveratrylene (Scheme 5.1-57). The reactions were carried out in tributylhexylammonium bis(tri-fluoromethanesulfonyl)amide [NBu3(QHi3)][(CF3S02)2N] with phosphoric or p-toluenesulfonic acid catalysts. The product was isolated by dissolving the ionic liq-uid/catalyst in methanol and filtering off the cyclotriveratrylene product as white crystals. Evaporation of the methanol allowed the ionic liquid and catalyst to be regenerated. [Pg.202]

Yet a final limitation to the Friedel-Crafts reaction is that a skeletal rearrangement of the alkyl carbocation electrophile sometimes occurs during reaction, particularly when a primary alkyl halide is used. Treatment of benzene with 1-chlorobutane at 0 °C, for instance, gives an approximately 2 1 ratio of rearranged (sec-butyl) to unrearranged (butyl) products. [Pg.556]

Problem 16.5 What is the major monosubstitution product from the Friedel-Crafts reaction of benzene with l-chloro-2-methylpropane in the presence of AlCl3 ... [Pg.560]

Solution "What is an immediate precursor of the target " The final step will involve introduction of one of three groups—chlorine, propyl, or sulfonic acid—so we have to consider three possibilities. Of the three, the chlorination of o-propylbenzene-sulfonic acid can t be used because the reaction would occur at the wrong position. Similarly, a Friedel-Crafts reaction can t be used as the final step because this reaction doesn t work on sulfonic acid-substituted (strongly deactivated) benzenes. Thus, the immediate precursor of the desired product is probably m-chloropropyl-benzene, which can be sulfonated to give a mixture of product isomers that must then be separated. [Pg.583]

Would you expect the Friedel-Crafts reaction of benzene with (P)-2-chloro-butane to yield optically active or racemic product Explain. [Pg.594]

Unlike benzene, pyridine undergoes electrophilic aromatic substitution reactions with great difficulty. Halogenation can be carried out under drastic conditions, but nitration occurs in very low yield, and Friedel-Crafts reactions are not successful. Reactions usually give the 3-substituted product. [Pg.949]

Based on petrochemicals, linear alkyl benzene sulfonates (LAS) are the most important surfactants. First description can be found in patents from the mid-1930s [2] using Fischer-Tropsch synthesis and Friedel-Crafts reactions. With the beginning of the 1950s the importance of the class of surfactants rose. The main use is in household and cleaning products. [Pg.502]

The LAB production process (process 1) is mainly developed and licensed by UOP. The N-paraffins are partially converted to internal /z-olefins by a catalytic dehydrogenation. The resulting mixture of /z-paraffins and n-olefins is selectively hydrogenated to reduce diolefins and then fed into an alkylation reactor, together with an excess benzene and with concentrated hydrofluoric acid (HF) which acts as the catalyst in a Friedel-Crafts reaction. In successive sections of the plant the HF, benzene, and unconverted /z-paraffins are recovered and recycled to the previous reaction stages. In the final stage of distillation, the LAB is separated from the heavy alkylates. [Pg.671]

Alkenes can be acylated with an acyl halide and a Lewis acid catalyst in what is essentially a Friedel-Crafts reaction at an aliphatic carbon. ° The product can arise by two paths. The initial attack is by the acyl cation RCO (or by the acyl halide free or complexed see 11-14) at the double bond to give a carbocation ... [Pg.784]

Answer Ester disconnection gives a tertiary alcohol (4S), Of the three possible Grignard disconnections, (a) is most helpful as it requires the Mannich product (49) of an aryl ketone (50) available by the Friedel-Crafts reaction. [Pg.224]

Ketone (42) could be made by a Friedel-Crafts reaction, but because the two aromatic rings are the sajiie, another FGI provides a short cut. Hydroxy ketone (43) is the product of a benzoin dimerisation (p 188) of (44). [Pg.296]

There is some similarity between the cracking of petroleum and the cracking of biomass. However, biomass is more complex chemically both in terms of structrual types and functional groups. In petrochemistry, hydrocarbons are fractionated and they are then functionalized by oxidation, halogenation, nitration and other chemical processes so as to add value. The commodity chemicals are then built up into more complex molecules using such popular synthetic methods as Friedel Craft reactions, Michael and aldol condensations, and Heck and Suzuki couplings. The speciality products of these reactions are then further elaborated into formulations for use in everyday applications ranging from personal care... [Pg.19]

Room temperature ionic liquids (RTILs), such as those based on A,A-dialkylimidazolium ions, are gaining importance (Bradley, 1999). The ionic liquids do not evaporate easily and thus there are no noxious fumes. They are also non-inflammable. Ionic liquids dissolve catalysts that are insoluble in conventional organic chemicals. IFP France has developed these solvents for dimerization, hydrogenation, isomerization, and hydroformylation reactions without conventional solvents. For butene dimerization a commercial process exists. RTILs form biphasic systems with the catalyst in the RTIL phase, which is immiscible with the reactants and products. This system is capable of being extended to a list of organometallic catalysts. Industrial Friedel-Crafts reactions, such as acylations, have been conducted and a fragrance molecule tra.seolide has been produced in 99% yield (Bradley, 1999). [Pg.148]

Urea-formaldehyde resins can be cured with isopropylbenzene production wastes containing 200 to 300 g/liter of AICI3 as an acid hardener [189]. Isopropylbenzene is formed as an intermediate in the Hock process by a Friedel-Crafts reaction from propene and benzene. The mixture hardens in 45 to 90 minutes and develops an adhesion to rock and metal of 0.19 to 0.28 MPa for 0.2% AICI3 and 0.01 to 0.07 MPa for 0.4% AICI3, respectively. A particular advantage is the increased pot life of the formulation. [Pg.118]


See other pages where Friedel-Crafts reactions product is mentioned: [Pg.206]    [Pg.404]    [Pg.386]    [Pg.206]    [Pg.404]    [Pg.386]    [Pg.167]    [Pg.438]    [Pg.551]    [Pg.555]    [Pg.383]    [Pg.59]    [Pg.59]    [Pg.61]    [Pg.1451]    [Pg.152]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Friedel-Crafts products

Friedel-Crafts reaction natural products

Friedel—Crafts reaction product selectivity

Physical Properties of Products from Friedel-Crafts and Grignard Reactions

© 2024 chempedia.info