Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fraction analytical procedure

Dual solvent fractional extraction (Fig. 7b) makes use of the selectivity of two solvents (A and B) with respect to consolute components C and D, as defined in equation 7. The two solvents enter the extractor at opposite ends of the cascade and the two consolute components enter at some point within the cascade. Solvent recovery is usually an important feature of dual solvent fractional extraction and provision may also be made for reflux of part of the product streams containing C or D. Simplified graphical and analytical procedures for calculation of stages for dual solvent extraction are available (5) for the cases where is constant and the two solvents A and B are not significantly miscible. In general, the accurate calculation of stages is time-consuming (28) but a computer technique has been developed (56). [Pg.67]

Tar. Before the development of gas chromatography (gc) and high pressure Hquid chromatography (hplc), the quantitative analyses of tar distillate oils involved tedious high efficiency fractionation and refractionation, followed by identification or estimation of individual components by ir or uv spectroscopy. In the 1990s, the main components of the distillate fractions of coal tars are deterrnined by gc and hplc (54). The analytical procedures included in the specifications for tar bulk products are given in the relevant Standardi2ation of Tar Products Tests Committee (STPTC) (33), ISO (55), and ASTM (35) standards. [Pg.346]

The total solids in municipal wastewaters exist in a distribution of sizes from individual ions up to visible particles. Specific analytical procedures have been established to distinguish the suspended fraction of the total solids and to further distinguish the settleable fraction within the suspended solids. A typical concentration of SS (suspended solids) for raw domestic wastewaters is 200 mg/1, but this can vary substantially from system to system. The lower limiting size for the SS fraction (about 1.5 microns) is arbitrarily defined by the test procedures and it should be noted that variations in test procedures themselves can also lead to... [Pg.401]

Co. and 20 mM nitrite in water, pH 3, 25 C, 60 min reaction], it was nitrosated to yield 3.62 mM 2,6-dimethyl-N-nitrosomorpho-line (DMNM), which was a 10% greater yield than that for a similar nitrosation of morpholine to give NMOR. This indicated a slightly larger rate constant for DMNM than for NMOR formation (3). Crude DMM is a 2 1 mixture of the cis and trans isomers ( 0). GC analysis of the product of the kinetic run showed that the 2 isomers were nitrosated at similar rates. Cis-DMNM [retention time (RT), 320 sec] was well separated from NMOR (RT, 430 sec), but trans-DMNM (RT, 405 sec) was not. Accordingly, we prepared pure cis-DMM, b.p. 133 C, by spinning-band fractional distillation of crude DMM and used it in the analytical procedure. The RT of N-nitrosopyrrolidine (NPYR) was 390 sec. [Pg.183]

Crop refined oils should be dissolved in hexane and partitioned with deionized water in a separatory funnel. The hexane fraction containing the carfentrazone-ethyl should be further partitioned with acetonitrile, and the rest of the analytical procedures for the parent compound should be followed. Concentrated HCl is added to the aqueous fraction to make the solution 1N and the samples are boiled under reflux for 1 h the rest of the analytical procedures for the acid metabolites should be followed. [Pg.482]

Third, the bulk of the items in Table 1 address method performance. These requirements must be satisfied on a substrate-by-substrate basis to address substrate-specific interferences. As discussed above, interferences are best dealt with by application of conventional sample preparation techniques use of blank substrate to account for background interferences is not permitted. The analyst must establish a limit of detection (LOD), the lowest standard concentration that yields a signal that can be differentiated from background, and an LOQ (the reader is referred to Brady for a discussion of different techniques used to determine the LOD for immunoassays). For example, analysis of a variety of corn fractions requires the generation of LOD and LOQ data for each fraction. Procedural recoveries must accompany each analytical set and be based on fresh fortification of substrate prior to extraction. Recovery samples serve to confirm that the extraction and cleanup procedures were conducted correctly for all samples in each set of analyses. Carrying control substrate through the analytical procedure is good practice if practicable. [Pg.722]

Once a sample of dissolved organic matter has been isolated, it is still seldom in a form that permits simple analysis. In most cases, there are far too many compounds present and some form of fractionation must take place to remove interferences and simplify analytical procedures. [Pg.372]

The use of sophisticated instrumental systems such as high-resolution GC-MS does not guarantee satisfactory quantitation of the hundreds of chemicals sometimes present in SPMDs without some fractionation of sample residues. Thus, the complexity of target residues, as well as interferences from the matrix sampled can be determinants in the cleanup and separation procedures needed for satisfactory analyses. The following discussion presents the salient features of the typical processing and analytical procedures applied to SPMD samples. [Pg.103]

A further advancement comes from inter-laboratory comparison of two standards having different isotopic composition that can be used for a normalization procedure correcting for all proportional errors due to mass spechomehy and to sample preparation. Ideally, the two standard samples should have isotope raUos as different as possible, but still within the range of natural variations. There are, however, some problems connected with data normalization, which are still under debate. For example, the CO2 equilibration of waters and the acid extraction of CO2 from carbonates are indirect analytical procedures, involving temperature-dependent fractionation factors (whose values are not beyond experimental uncertainties) with respect to the original samples and which might be re-evaluated on the normalized scale. [Pg.30]

Throughout this chapter, we cite examples of the use of the NIST Standard Reference Material SRM 1649, which is referred to as Air Particles or Urban Air Particulate Matter, (a) to validate analytical procedures for determination of PAHs and PACs in samples of complex mixtures of particulate matter in ambient air and (b) for laboratory intercomparisons of methodologies for bacterial bioassays and bioassay-directed fractionations of organic extracts of such mixtures (e.g., see Claxton et al., 1992a Lewtas et al., 1990a, 1992 and May et al., 1992). [Pg.450]

The evaluation of robustness is normally considered during the development phase and depends on the type of procedure under study. Experimental design (e.g., fractional factorial design or Plackett-Burman design) is common and useful to investigate multiple parameters simultaneously. The result will help to identify critical parameters that will affect the performance of the method. Common method parameters that can affect the analytical procedure should be considered based on the analytical technique and properties of the samples ... [Pg.736]

Molybdenum isotope ratio measurements by MC-ICP-MS (Plasma 54) have been carried out using Zr or Ru elemental spikes to study the mass discrimination during the whole analytical procedure including sample preparation.146 A laboratory fractionation of Mo isotopes of about 0.15 % is observed during ion exchange by offline Mo separation. Using this analytical technique, possible natural isotope variation of Mo can be determined with a precision of 0.02 %. [Pg.238]

The solution resulting from dissolving the test portion and treating it according to the analytical procedure. The test solution may be used directly to determine the presence/absence or the mass fraction or mass concentration of the analyte without attributable sampling error. Alternatively, an aliquot (2.2.9) may be used. [Pg.8]

The content mass fraction interval to which the analytical procedure is applicable. [Pg.14]

To purify a protein, it is essential to have a way of detecting and quantifying that protein in the presence of many other proteins at each stage of the procedure. Often, purification must proceed in the absence of any information about the size and physical properties of the protein or about the fraction of the total protein mass it represents in the extract. For proteins that are enzymes, the amount in a given solution or tissue extract can be measured, or assayed, in terms of the catalytic effect the enzyme produces—that is, the increase in the rate at which its substrate is converted to reaction products when the enzyme is present. For this purpose one must know (1) the overall equation of the reaction catalyzed, (2) an analytical procedure for determining the disappearance of the substrate or the appearance of a reaction product, (3) whether the enzyme requires cofactors such as metal ions or coenzymes, (4) the dependence of the enzyme activity on substrate concentration, (5) the optimum pH, and (6) a temperature zone in which the enzyme is stable and has high activity. Enzymes are usually assayed at their optimum pH and at some convenient temperature within the range... [Pg.94]

Concentration techniques, applied to assign priority pollutants, function as an interface between the environment, chemical analysis, and bioassays. The transition of harmful pollutants in an environmental system to multicomponent concentrates derived from that system is the principal challenge of concentration techniques aimed at the assignment of organic priority pollutants. A compatible combination of chemical and biological methods must be used. These methods can vary from the development of analytical procedures based on the observed biological activity of fractions of an environmental concentrate to the toxicological... [Pg.49]

Analytical Procedures. Hydrophobic Neutral Fraction. The hydro-phobic neutral fraction, which was desorbed in methylene chloride, was concentrated to an appropriate volume (1 mL) in a Kudema-Danish apparatus. Then, under a stream of N2 and after addition of the internal standard (i.e., hexa-methylbenzene), this fraction was analyzed by GC-FID and GC-MS. [Pg.460]

C18 solid-phase extraction is used to fractionate polyphenolics for their identification and characterization. This technique can eliminate interfering chemicals from crude extracts and produce desirable results for HPLC or other analytical procedures. To obtain a sufficient volume for all analyses, several separations by solid-phase extraction may be performed. The individual fractions need to be combined and dissolved in solvents appropriate for HPLC analysis. In Basic Protocol 2, the application of a current of nitrogen gas for the removal of water from the C18 cartridge is an important step in the selective fractionation of polyphenolics into non-anthocy-anin and anthocyanin fractions. After the collection of non-anthocyanin polyphenolics, no additional work is necessary to elute anthocyanins bound to the C18 solid phase if anthocyanins are not to be determined. [Pg.1249]


See other pages where Fraction analytical procedure is mentioned: [Pg.139]    [Pg.290]    [Pg.445]    [Pg.119]    [Pg.259]    [Pg.386]    [Pg.251]    [Pg.571]    [Pg.52]    [Pg.426]    [Pg.218]    [Pg.229]    [Pg.317]    [Pg.170]    [Pg.207]    [Pg.188]    [Pg.162]    [Pg.234]    [Pg.104]    [Pg.106]    [Pg.250]    [Pg.56]    [Pg.617]    [Pg.488]    [Pg.367]    [Pg.391]    [Pg.12]    [Pg.587]    [Pg.93]    [Pg.126]    [Pg.514]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Analytic Procedures

Analytical Fractionation

Analytical procedures

Fractionation procedure

© 2024 chempedia.info