Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cofactor requirements

Fohc acid is a precursor of several important enzyme cofactors required for the synthesis of nucleic acids (qv) and the metaboHsm of certain amino acids. Fohc acid deficiency results in an inabiUty to produce deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and certain proteins (qv). Megaloblastic anemia is a common symptom of folate deficiency owing to rapid red blood cell turnover and the high metaboHc requirement of hematopoietic tissue. One of the clinical signs of acute folate deficiency includes a red and painhil tongue. Vitamin B 2 folate share a common metaboHc pathway, the methionine synthase reaction. Therefore a differential diagnosis is required to measure foHc acid deficiency because both foHc acid and vitamin B 2 deficiency cause... [Pg.41]

Process B Genetic instability Poor enzyme stability Cofactor requirement Product (non-polar) inhibition Biocatalyst Free enzyme Free cells Immobilised enzyme Immobilised cells... [Pg.33]

The reaction has a cofactor requirement (see Table 2.1) which is relatively easy to satisfy when using whole cells. [Pg.341]

Shimomura, O., and Johnson, F. H. (1968d). Cbaetopterus photoprotein crystallization and cofactor requirements for bioluminescence. Science 159 1239-1240. [Pg.435]

Rapamycin is a macrocyclic lactone produced by Streptomyces hygroscopious. This bacterium was originally cultured from a soil sample collected on Easter Island (known locally as Rapa Nui hence the name rapamycin). Parenthetically, rapamycin shares an interesting mode of action with two other antifungal and immunosuppressive compounds, FK506and cyclosporin A. Inside cells, rapamycin first binds to FKBP12, a small protein receptor known as an immunophilin. FKBP12 is not an essential protein but is an important cofactor required for rapamycin to bind and inhibit TOR. [Pg.1213]

Directed evolution of enzymes has been used to improve the reducing function of the enzymes. For example, this method was used to eliminate the cofactor requirement of B. stearothermophillus lactate dehydrogenase, which is activated in the presence of fructose 1,6-bisphosphate [12]. The activator is expensive and representative of the sort of cofactor complications that are undesirable in industrial processes. Three rounds of random mutagenesis and screening produced a mutant that is almost fully... [Pg.204]

Figure 8.16 Elimination of the cofactor requirement by directed evolution [12]. Figure 8.16 Elimination of the cofactor requirement by directed evolution [12].
This system is present in many tissues, including hver, kidney, brain, lung, mammary gland, and adipose tissue. Its cofactor requirements include NADPfl, ATP, Mn, biotin, and HC03 (as a source of CO2). Acetyl-CoA is the immediate substrate, and free palmitate is the end product. [Pg.173]

Classical approaches to plant DNA isolation aim to produce large quantities of highly purified DNA. However, smaller quantities of crudely extracted plant DNA are often acceptable for PCR analysis. Another efficient method for preparation of plant DNA for PCR is a single-step protocol that involves heating a small amount of plant tissue in a simple solution. Several factors influence nucleic acid release from tissue salt, EDTA, pH, incubation time and temperature. These factors must be optimized for different sample substrates. EDTA in the sample solution binds the Mg + cofactor required by the Taq polymerase in the PCR, so the EDTA concentration in the solution, or the Mg + concentration in the PCR, must be carefully optimized. [Pg.660]

In respect of designing an economic production process, the stoichiometric cofactor required in carbonyl reductions or the respective oxidation reactions needs to be minimized that is, enabled by recycling of the cofactor. The measure for the efficiency of the recycling process is the total turnover number (TTN), which describes the moles of product synthesized in relation to the moles of cofactor needed. The different approaches in cofactor recycling were recently reviewed by Goldberg et at. [12]. [Pg.82]

The enzymatic processes involved in the formation of catecholamines have been characterized. The component enzymes in the pathway have been purified to homogeneity, which has allowed for detailed analysis of their kinetics, substrate specificity and cofactor requirements and forthe development of inhibitors (Fig. 12-l).TheircDNAs have been cloned, and studies with knockout mice clearly indicate the importance of these enzymes since their... [Pg.211]

Rat liver microsomes and cytosol also catalyze this reaction with the same cofactor requirements (90). [Pg.350]

Indicine IV-oxide (169) (Scheme 36) is a clinically important pyrrolizidine alkaloid being used in the treatment of neoplasms. The compound is an attractive drug candidate because it does not have the acute toxicity observed in other pyrrolizidine alkaloids. Indicine IV-oxide apparently demonstrates increased biological activity and toxicity after reduction to the tertiary amine. Duffel and Gillespie (90) demonstrated that horseradish peroxidase catalyzes the reduction of indicine IV-oxide to indicine in an anaerobic reaction requiring a reduced pyridine nucleotide (either NADH or NADPH) and a flavin coenzyme (FMN or FAD). Rat liver microsomes and the 100,000 x g supernatant fraction also catalyze the reduction of the IV-oxide, and cofactor requirements and inhibition characteristics with these enzyme systems are similar to those exhibited by horseradish peroxidase. Sodium azide inhibited the TV-oxide reduction reaction, while aminotriazole did not. With rat liver microsomes, IV-octylamine decreased... [Pg.397]

As already mentioned, RNR is the metalloenzyme in which the first definitively characterized stable amino acid radical (1), later identified as a tyrosyl radical, was found in 1972. The RNR enzymes catalyse the reduction of ribonucleotides to their corresponding deoxyribonucleotides utilized in DNA biosynthesis. There are three unique classes of this enzyme, differing in composition and cofactor requirements all of them, however, make use of metal ions and free radical chemistry. Excellent reviews on RNRs are available (60, 61, 70, 89-97). [Pg.159]

CC - - COFACTOR REQUIRES MANGANESE OR MAGNESIUM (BY SIMI-CC LARITY). [Pg.41]

Figure 11.1. Structures of cofactors required for catalysis of one-carbon reactions in methanogenic pathways. Figure 11.1. Structures of cofactors required for catalysis of one-carbon reactions in methanogenic pathways.
LO activity is found in a variety of mammalian cells, most notably leukocytes, with the enzymes from neutrophils and the rat basophilic leukemia (RBL-1) cell line being the most studied several have been purified and cloned [5]. 5-LO is a cytosolic enzyme which requires calcium, ATP and additional uncharacterized cell components for optimal activity. Characterization and kinetic studies with 5-LO enzymes are often difficult, because of self-inactivation and complex cofactor requirements. [Pg.2]

To investigate the cofactor requirement and the characteristics of the enzyme, the effects of additives were examined using phenylmalonic acid as the representative substrate. The addition of ATP or ADP to the enzyme reaction mixtures, with or without coenzyme A, did not enhance the rate of reaction. From these results, it is concluded that these co-factors are not necessary for this decarboxylase. It is well estabhshed that avidin is a potent inhibitor of the bio-tin-enzyme complex [11 -14]. In the present case, addition of avidin has no influence on the decarboxylase activity, indicating that the AMDase is not a biotin enzyme. Thus, the co-factor requirements of AMDase are entirely different from those of known analogous enzymes, such as acyl-CoA carboxylases [15], methyhnalonyl-CoA decarboxylases [11] and transcarboxylases [15,16]. [Pg.11]

Flavonol synthase (FLS E.C.l.14.11.23) catalyzes the committed step in the production of fiavonols by introduction of a double bond between C2 and C3 of the corresponding dihydroflavonols. Like E3H, ELS has been described as a 2-oxoglutatarate-dependent dioxygenase based on its cofactor requirements for 2-oxoglutarate, Fe, and ascorbate. FLS was initially identified in enzyme preparations from illuminated parsley cell suspension cultures [67]. Subsequently, FLS was characterized from the flower buds of Matthiola incana and carnation (Dianthus caryophyllus L.), and it was suggested that there was regulation between flavonol and anthocyanidin biosynthesis [83, 84]. [Pg.77]

It was interesting that the cell-free extract had the capacity to support the biosynthesis all the way to FAc 1, an end product of one of the fluorometabolite pathways. This observation indicates that all of the enzymes and cofactors required to support FAc biosynthesis were present and active in the cell-free extract, even though the integrity of the cells had been destroyed. This experiment showed that organic fluoride production was achievable in vitro from the S. cattleya protein extract. Subsequent purification of the fluorinase (5 -fluoro-5 -deoxyadenosine synthase), using standard purification protocols revealed that the true substrate for the enzyme was SAM 8 and not ATP 7 [8]. It transpired that ATP 7 and L-methionine (L-Met) were converted to SAM 8 in the crude cell-free extract and that the resultant SAM 8 was then processed by the fluorinase with the release of L-Met. Thus, a catalytic cycle where L-Met was regenerated to drive these two reactions had been inadvertently established (Scheme 1). The fluorinase catalyses the conversion of SAM 8 and fluoride ion to make 5 -FDA 5 as shown in Scheme 1 [8]. [Pg.763]

Like LAR, ANR is a member of the RED protein family. Full details of the protein structure and reaction mechanism are yet to be published. However, Xie et al. compared the A. thaliana (AtANR) and M. truncatula (MtANR) ANR amino acid sequences and recombinant protein activities, and made suggestions on the possible reaction series. The two recombinant proteins showed significantly different kinetic properties, substrate specificities, and cofactor requirements. Although AtANR and MtANR share only 60% sequence identity, some well-conserved domains are evident, in particular the Rossmann dinucleotidebinding domain (GxxGxxG) near the N-termini. However, two amino acid variations did... [Pg.165]


See other pages where Cofactor requirements is mentioned: [Pg.380]    [Pg.394]    [Pg.14]    [Pg.33]    [Pg.127]    [Pg.574]    [Pg.865]    [Pg.855]    [Pg.265]    [Pg.302]    [Pg.855]    [Pg.157]    [Pg.118]    [Pg.65]    [Pg.234]    [Pg.238]    [Pg.356]    [Pg.184]    [Pg.338]    [Pg.292]    [Pg.105]    [Pg.38]    [Pg.216]    [Pg.79]    [Pg.80]    [Pg.505]    [Pg.31]    [Pg.356]    [Pg.203]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Cofactor

© 2024 chempedia.info