Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform infrared methods

It can be readily seen from the above discussion that a simplistic version of the polarization modulation method for using Fourier Transform Infrared method would be to say that if one subtracted the message obtained from the vertical light from that obtained from the parallel light, the result will be information from the surface only. The relevant equation is shown below. [Pg.356]

The chapters on elongational viscosities are followed in the next section by chapters on very eloquent spectroscopic studies that detail the usefulness of fluorescence and Fourier transform infrared methods in elucidating the associations among water-soluble polymers, particularly those that are surfactant modified. [Pg.1]

Auxiliary energies, like low-frequency ultrasonication using ethanol (Georgogianni et al., 2008), and methanol in combination with FTIR (Fourier transform infrared) method to monitor the reaction (Reyman et al., 2014), have been proposed to enhance... [Pg.91]

As mentioned, we also carried out IR studies (a fast vibrational spectroscopy) early in our work on carbocations. In our studies of the norbornyl cation we obtained Raman spectra as well, although at the time it was not possible to theoretically calculate the spectra. Comparison with model compounds (the 2-norbornyl system and nortri-cyclane, respectively) indicated the symmetrical, bridged nature of the ion. In recent years, Sunko and Schleyer were able, using the since-developed Fourier transform-infrared (FT-IR) method, to obtain the spectrum of the norbornyl cation and to compare it with the theoretically calculated one. Again, it was rewarding that their data were in excellent accord with our earlier work. [Pg.143]

Transmission Fourier Transform Infrared Spectroscopy. The most straightforward method for the acquisition of in spectra of surface layers is standard transmission spectroscopy (35,36). This approach can only be used for samples which are partially in transparent or which can be diluted with an in transparent medium such as KBr and pressed into a transmissive pellet. The extent to which the in spectral region (typically ca 600 4000 cm ) is available for study depends on the in absorption characteristics of the soHd support material. Transmission ftir spectroscopy is most often used to study surface species on metal oxides. These soHds leave reasonably large spectral windows within which the spectral behavior of the surface species can be viewed. [Pg.285]

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Attenuated total redectance (atr) ftir spectroscopy is based on the principle of total internal redection (40). Methods based on internal redection in the uv and visible regions of the spectmm are also common in addition to those in the ir region. The implementation of internal redection in the ir region of the spectmm provides a means of obtaining ir spectra of surfaces or interfaces, thus providing moleculady-specific vibrational information. [Pg.286]

Chemical Gas Detection. Spectral identification of gases in industrial processing and atmospheric contamination is becoming an important tool for process control and monitoring of air quaUty. The present optical method uses the ftir (Fourier transform infrared) interference spectrometer having high resolution (<1 cm ) capabiUty and excellent sensitivity (few ppb) with the use of cooled MCT (mercury—cadmium—teUuride) (2) detectors. [Pg.295]

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

In this chapter, three methods for measuring the frequencies of the vibrations of chemical bonds between atoms in solids are discussed. Two of them, Fourier Transform Infrared Spectroscopy, FTIR, and Raman Spectroscopy, use infrared (IR) radiation as the probe. The third, High-Resolution Electron Enetgy-Loss Spectroscopy, HREELS, uses electron impact. The fourth technique. Nuclear Magnetic Resonance, NMR, is physically unrelated to the other three, involving transitions between different spin states of the atomic nucleus instead of bond vibrational states, but is included here because it provides somewhat similar information on the local bonding arrangement around an atom. [Pg.413]

The use of detection methods sueh as mass speetrometry (MS) and Fourier-transform infrared (FTIR) speetroseopy ean be very useful with respeet to the quality... [Pg.237]

Infrared spectroelectrochemical methods, particularly those based on Fourier transform infrared (FTIR) spectroscopy can provide structural information that UV-visible absorbance techniques do not. FTIR spectroelectrochemistry has thus been fruitful in the characterization of reactions occurring on electrode surfaces. The technique requires very thin cells to overcome solvent absorption problems. [Pg.44]

Fourier transform infrared (FTIR) spectroscopy is the most popular method for determining the imidization process in the solid state and identifying specific substituents on the macromolecular backbone (e.g., CN, SO3H, CO, SO2).131 A method for calculating the diermal imidization extent based on FTIR data has been reported by Pride.132 Raman spectroscopy was used on the model study of PMDA-ODA condensation, and the possible formation of an inline bond by reaction of an amino group with an imide carboxyle was evidenced.133... [Pg.300]

The basic methods of the identification and study of matrix-isolated intermediates are infrared (IR), ultraviolet-visible (UV-vis), Raman and electron spin resonance (esr) spectroscopy. The most widely used is IR spectroscopy, which has some significant advantages. One of them is its high information content, and the other lies in the absence of overlapping bands in matrix IR spectra because the peaks are very narrow (about 1 cm ), due to the low temperature and the absence of rotation and interaction between molecules in the matrix. This fact allows the identification of practically all the compounds present, even in multicomponent reaetion mixtures, and the determination of vibrational frequencies of molecules with high accuracy (up to 0.01 cm when Fourier transform infrared spectrometers are used). [Pg.6]

Many methods are currently available for the qualitative analysis of anthocyanins including hydrolysis procedures," evaluation of spectral characteristics, mass spectroscopy (MS), " nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. - Frequently a multi-step procedure will be used for... [Pg.486]

Reaction products can also be identified by in situ infrared reflectance spectroscopy (Fourier transform infrared reflectance spectroscopy, FTIRS) used as single potential alteration infrared reflectance spectroscopy (SPAIRS). This method is suitable not only for obtaining information on adsorbed products (see below), but also for observing infrared (IR) absorption bands due to the products immediately after their formation in the vicinity of the electrode surface. It is thus easy to follow the production of CO2 versus the oxidation potential and to compare the behavior of different electrocatalysts. [Pg.76]

It is only since 1980 that in situ spectroscopic techniques have been developed to obtain identification of the adsorbed intermediates and hence of reliable reaction mechanisms. These new infrared spectroscopic in situ techniques, such as electrochemically modulated infrared reflectance spectroscopy (EMIRS), which uses a dispersive spectrometer, Fourier transform infrared reflectance spectroscopy, or a subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS), have provided definitive proof for the presence of strongly adsorbed species (mainly adsorbed carbon monoxide) acting as catalytic poisons. " " Even though this chapter is not devoted to the description of in situ infrared techniques, it is useful to briefly note the advantages and limitations of such spectroscopic methods. [Pg.76]

The hydrogen content Ch greatly influences structure and consequently electronic and optoelectronic properties. An accurate measurement of Ch can be made with several ion-beam-based methods see e.g. Arnold Bik et al. [54]. A much easier accessible method is Fourier-transform infrared transmittance (FTIR) spectroscopy. The absorption of IR radiation is different for different silicon-hydrogen bonding configurations. The observed absorption peaks have been indentified [55-57] (for an overview, see Luft and Tsuo [6]). The hydrogen content can be determined from the absorption peak at 630 cm , which includes... [Pg.5]

The Analysis of Extraterrestrial Materials. By Isidore Adler Chemometiics. By Muhammad A. Sharaf, Deborah L. Illman, and Bruce R. Kowalski Fourier Transform Infrared Spectrometry. By Peter R. Griffiths and James A. de Haseth Trace Analysis Spectroscopic Methods for Molecules. Edited by Gary Christian and James B. Callis... [Pg.653]

With recent developments in analytical instrumentation these criteria are being increasingly fulfilled by physicochemical spectroscopic approaches, often referred to as whole-organism fingerprinting methods.910 Such methods involve the concurrent measurement of large numbers of spectral characters that together reflect the overall cell composition. Examples of the most popular methods used in the 20th century include pyrolysis mass spectrometry (PyMS),11,12 Fourier transform-infrared spectrometry (FT-IR), and UV resonance Raman spectroscopy.16,17 The PyMS technique... [Pg.322]

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

Modern Fourier Transform Infrared Spectroscopy Chemical Test Methods of Analysis... [Pg.779]

In-situ Fourier transform infrared spectroscopy. The final technique in this section concerns the FTIR approach which is based quite simply on the far greater throughput and speed of an FTIR spectrometer compared to a dispersive instrument. In situ FTIR has several acronyms depending on the exact method used. In general, as in the EMIRS technique, the FTIR-... [Pg.111]


See other pages where Fourier transform infrared methods is mentioned: [Pg.123]    [Pg.127]    [Pg.123]    [Pg.127]    [Pg.332]    [Pg.140]    [Pg.148]    [Pg.148]    [Pg.106]    [Pg.366]    [Pg.79]    [Pg.224]    [Pg.555]    [Pg.30]    [Pg.85]    [Pg.364]    [Pg.365]    [Pg.386]    [Pg.551]    [Pg.105]    [Pg.469]    [Pg.381]    [Pg.520]    [Pg.619]    [Pg.912]    [Pg.344]    [Pg.528]    [Pg.610]    [Pg.218]   
See also in sourсe #XX -- [ Pg.133 , Pg.141 , Pg.142 , Pg.143 , Pg.144 , Pg.145 ]




SEARCH



Fourier transform infrared

Fourier transform methods

Fourier transforms methods

Transform method

© 2024 chempedia.info